
 Jul/Aug 2004 3

265 Daniel Dr
Plano, TX 75094
n5eg@arrl.net

A Low-Cost 100 MHz
Vector Network Analyzer

with USB Interface

By Tom McDermott, N5EG, and Karl Ireland

This article describes a low-cost vector network analyzer that
operates from 200 kHz to 100 MHz, and connects to

a personal computer using a USB 1.1 interface.1

Introduction
One of the more useful pieces of test

equipment for designers and experi-
menters is the vector network
analyzer (VNA). The VNA allows mea-
suring the forward and reverse gain
and phase response of a circuit, as well
as the input and output reflection
properties (complex impedance).
Traditionally, the VNA has used
s-parameters to describe the four prop-
erties of a two-port circuit being mea-
sured. The VNA is used to measure
and adjust filters, coaxial cables, am-
plifiers, antenna input impedance vs.
frequency, and so forth. A full VNA

consists of two measurement sections:
one in the forward direction that mea-
sures s21 (forward gain and phase) and
s11 (input reflection magnitude and
phase), and a duplicate circuit in the
reverse direction that measures s22
(output reflection magnitude and
phase) and s12 (reverse gain and phase,
usually called reverse isolation). To
save cost, many instruments only pro-
vide enough hardware to measure in
one direction. Then, the device under
test is physically reversed and the
measurements rerun. Most properly,
this simplified piece of equipment is
called a transmission-reflection test

set; but most of the time, it is still re-
ferred to as a VNA, the same as its
big brother.

One significant difference between
the two instruments is that a true VNA
can be more accurately calibrated
through true two-port techniques,
whereas the transmission-reflec-
tion test set relies on precision stan-
dards (open, short, 50 Ω) to calibrate
the reflection measurement. A two-
port calibration based on the TRL
(Through-Reflect-Line) technique
can theoretically dispense with the
need for precision load standards.

Another related piece of equipment
is the scalar network analyzer. The dif-
ference between the scalar analyzer
and the VNA is that the scalar ana-
lyzer does not include the additional
circuitry to measure the phase com-
ponent of the transmission and reflec-

1Notes appear on page 14.

2517 Lawndale
Plano, TX 75023

4 Jul/Aug 2004

tion parameters of the circuit under
test, while the vector analyzer mea-
sures both the magnitude and phase
components. Thus the VNA is quite a
bit more complicated. The vector prop-
erties are often of great interest, such
as when measuring the input imped-
ance of an antenna, or the group delay
of a filter, and thus the vector analyzer
is a more useful instrument for many
types of measurements.

This article will describe a vector
transmission-reflection type of instru-
ment; but we’ll borrow the more gran-
diose title VNA, since most people are
more familiar with that terminology.
Fig 1 is a picture of the first prototype
board—before the debug/fixes! The TX
and RX BNC connectors are on the left
and the Universal Serial Bus (USB)
and DC power connectors are on the
right. The directional coupler (metal
case) is next to the TX connector. Fig-
ures 2 and 3 respectively show front
and rear views of the completed unit.

Overview of the Instrument
Commercially available VNAs are

very expensive pieces of precision equip-
ment, costing tens of thousands of
dollars. These instruments provide tre-
mendous dynamic range (approaching
90 to 100 dB), a high degree of accu-
racy, and many software options for
manipulating and displaying data. It’s
possible to sacrifice some of the dynamic
range and precision to save a lot on the
cost and complexity of the measure-
ment hardware. Today’s personal
computers, however, provide extensive
ability to manipulate and display data
for virtually no additional cost—just the
time and effort of creating the software.
So the instrument itself is kept as
simple as possible by offloading much
of the work to the host computer.

Fig 4 is a block diagram of the low-
cost VNA measurement device. The
equipment consists of a quadrature
frequency synthesizer, a reflection
measurement circuit, a transmission
measurement circuit, a pair of phase/
magnitude RF detectors (one for trans-
mission and one for reflection), a
multi-channel analog-to-digital con-
verter (ADC), and a specialized USB-
aware microprocessor.2 Additionally, a
+3.3 V regulator and a +5 to –5 V in-
verter provide the digital and analog
supply voltages for the board.

The need for a quadrature synthe-
sizer takes a little explanation. The
recently released Analog Devices
AD83023 device measures the magni-
tude ratio and relative phase differ-
ence between two RF signals (up to
2.7 GHz). The phase response is am-
biguous, however. It is symmetrical

Figure 1—Photograph of the assembled prototype board. The 4-layer board is
approximately 4×6 inches.

Figure 2—Photograph of the front panel of the assembled unit.

Figure 3— Photograph of the rear panel of the assembled unit.

 Jul/Aug 2004 5

about 0°, at which point the phase ac-
curacy is significantly degraded. This
can be seen from Fig 5, a plot of the
phase and amplitude detector output
responses of the device vs the input
phase difference, from the AD8302
data sheet. To resolve the phase sign,
the VNA instrument switches the ref-
erence input to the detector between
an in-phase (I) and quadrature-phase
(Q) reference signal and measures the
detector output for both conditions.
Software on the host computer then
resolves the correct phase quadrant
between the two RF detector inputs.
The low-pass filters are used to recon-
struct the DDS output from the digi-
tal stair-step waveform produced. The
Analog Devices AD98544 DDS is
clocked by a 24 MHz sine wave; it then
internally multiplies it up to 288 MHz
with an on-chip PLL. This 288 MHz
internal signal clocks the DDS fre-
quency-generation circuits and the
digital-to-analog (DAC) circuits on the
chip. Significant aliasing of the out-
put signal is observed on an oscillo-
scope even at an output frequency of
less than 100 MHz. The two low-pass
filters, one on I and one on Q, remove
most of these aliasing and stair-step-
ping artifacts and produce clean sine
waves in phase quadrature.

The RF detectors are broadband
and have a total dynamic range of al-
most 60 dB, but with the restriction
that the range is ±30 dB between the
reference signal and the unknown
signal. The performance of these de-
tectors sets the dynamic range of the
instrument. To achieve greater dy-
namic range, a much more expensive
tuned-receiver configuration would be
required. For a reflection measure-
ment, the practical measurement limit
is about 30 dB of return loss.

Two selectors are implemented with
a pair of dual-input Maxim 200-MHz
video amplifiers that are programmable
by the target processor. One allows se-
lection of whether the I or Q DDS ref-
erence signal is applied to both of the
RF detectors. The other selects the re-
flected signal or a monitor signal (used
only for debugging) to be measured by
the reflection RF detector.

The transmission measurement
process is very simple. A BNC connec-
tor (labeled RX) and terminated in
50 ohms is connected to one of the RF
detectors. This measures the ampli-
tude and phase of the signal received
on the RX connector against the in-
ternal reference signals I and Q. The
reflection circuit uses a Mini-Circuits
20-dB directional coupler5 to derive
the signal reflected by the load from
the other BNC connector (labeled TX).

Figure 5—Analog Devices AD8302 phase output response. The response is symmetric
about 0°, and thus a quadrature technique is needed to resolve the sign of the phase
angle. The accuracy is poor near 0° and 180° due to detector output saturation,
necessitating compensation.

Figure 4—Block diagram of the Vector Network Analyzer.

The reflected signal produced by the
directional coupler is the complex re-
flection coefficient gamma, Γ. The
magnitude and phase of this reflection
signal are derived by measurements
against the internal I and Q reference
signals.

In operation, the host processor (the

PC) sends a command to the VNA over
the USB port, triggering a measure-
ment. In the command, the host sends
a single frequency word as a 64-bit
integer to the target. The target pro-
cessor (the microprocessor on the
VNA) then programs the quadrature
direct digital synthesizer (DDS) to

6 Jul/Aug 2004

that frequency. Once the frequency is
programmed, the target processor
makes a series of analog measure-
ments. These measurements are made
by using the input multiplexer of a
multi-channel ADC chip to sequen-
tially select and digitize the various
RF detector analog output voltages.
Additionally, the target processor
switches between the I-reference sig-
nal and the Q-reference signal to the
RF detectors and remeasures the
detector’s analog outputs. The target
then repeats these two sets of mea-
surements in the reflected direction.
The RF detector’s output a reference
dc voltage, and the target processor
measures these as well. In total, more
than a dozen analog voltages are digi-
tized and returned by the target pro-
cessor. All of these measurements are
assembled into a single 64-byte USB
response packet.

Next, the host processor polls the
target to see if it has the measurement
ready. When it is ready, the target
sends a response data packet back to
the host containing the set of data
samples that it has measured. The
target is then ready to accept a new
measurement request.

The host computer processes the
measurement data set at each fre-
quency and organizes the information
into a useful display. A Windows ap-
plication controls the USB device and
provides a GUI interface that looks
like a traditional VNA, displaying s-
parameters in rectangular or polar
(Smith chart) format, providing for
calibration and error correction of the
measurements, selection of the fre-
quency sweep range, printing of the
charts, and so on. The host application
was written in Microsoft Visual C++
.NET version 2003.

The USB port is capable of supply-
ing 100 to 500 mA (at the option of
the host) to the target device. The VNA
draws about 1 A, so it is powered from
a +5 V dc wall-cube supply. On the
VNA board, a Maxim inverter pro-
duces –5 V dc for the video selectors; a
Maxim linear regulator produces +3.3
V dc for the digital parts. The voltage
inverter needed to be decoupled with
L-C filters to lower the noise level on
the analog lines. Additionally, the
video amplifiers required 10-ohm re-
sistors and decoupling capacitors in
the +5 and -5 volt lines to produce good
low-level signal measurements of the
return-loss signals. Power decoupling
of the digital parts required just by-
pass capacitors. The DDS chip and the
+3.3 V regulator are each heat sinked
to the circuit board itself. A metalized
pad on the top layer of the board is

connected to the ground plane through
a large number of vias. The solder
mask is then opened on the top layer
directly underneath each part, permit-
ting each to be soldered directly to the
circuit board itself. Without this heat
sink, these two parts would overheat.

Overview of USB
Many newer computers do not in-

clude an EIA-232 serial interface.
Many laptops now have only a USB
interface for connection of the com-
puter to outside devices. The USB in-
terface supports a large variety of de-
vice types. It automatically identifies
target devices, and then loads the ap-
propriate Windows device driver. The
driver is loaded when the USB target
is plugged in, and unloaded when the
target device is disconnected. USB can
provide a minimum of 100 mA of sup-
ply current to the target device. In
some cases it can supply more, up to
500 mA, but only 100 mA is guaran-
teed. This voltage is nominally +5 V,
but resistive losses in the USB
cable can drop it down to +4.4 V in the
worst case.

When a USB device is first con-
nected to a host and powered up, the
host senses the additional connection
via a 1.5 kohm resistor that the tar-
get asserts onto one USB data line.
This process is called enumeration.
Through a sequence of packets, the
host learns the identity of the device
type that connected, its configured
capabilities, and which Windows de-
vice driver needs to be used to com-
municate with the USB target.

The target in the VNA is repro-
grammable; it does not contain any
non-volatile memory, just RAM. This
allows the VNA target code to be
changed quite painlessly. The VNA
host application program downloads
the executable code to the target each
time it is connected and powered up—
an extremely flexible arrangement. It
permits different application loads to
be sent to the VNA target. A minor
drawback, however, is that the target
then has to go through a somewhat
more complex enumeration process.

The Cypress EZUSB microproces-
sor supports a minimum level of func-
tionality in the processor at power-up
when no code has yet been loaded to
it—namely the ability to identify itself,
to accept a download file, and to restart
itself. After initially enumerating the
target, the VNA host application soft-
ware downloads the desired target code
and then restarts the target. Then the
newly downloaded code on the target
takes control away from the Cypress-
supplied default values and it re-

enumerates itself by disconnecting
then reconnecting the 1.5-k ohm resis-
tor, this time with different capabili-
ties identified. The new capabilities are
specified by the newly downloaded and
running target application. Cypress
supplies a Windows device driver with
their free development kit that is used
by the VNA host application. Addition-
ally, Cypress supplies a free C-lan-
guage code framework for the target
EZUSB processor that is USB 1.1, Sec-
tion 9 compliant (named after the USB
specification chapter). While there is a
bit of a learning curve associated with
it all, once understood, the framework
makes developing a C-language appli-
cation very easy—just the relevant
USB endpoint handlers have to be
coded. Everything else is done. The
entire target application was devel-
oped in the evenings of about two
weeks without requiring any debugger.
Note that Windows 95 does not sup-
port USB. (Win95 OSR2.1 theoretically
supports it, but what I’ve read claims
that it is too buggy to use). Win 98 Gold
(original edition) supports USB 1.0,
and Win 98 SE (Second Edition) sup-
ports USB 1.1. All versions of Windows
later than Win98 also support USB 1.1.
WinXP also supports USB 2.0. The 1.1
version of USB adds an interrupt
packet type that is not used in this VNA
target application.

The USB host sends packets to the
target device and receives packets
from the target device. The format of
these packets is under software con-
trol. The USB interface is synchronous
with exactly 1 ms time slots. During
each slot, the host can send one con-
trol packet, one data packet, and one
isochronous packet (useful for audio,
for example). The target can return
one data packet and one isochronous
packet during the next slot. All USB
target devices are polled. To retrieve
a data packet, the host sends a con-
trol packet to the host requesting a
response. The target then returns a
data packet. Data packets can be up
to 64 bytes in length, while isochro-
nous packets can be 1023 bytes in
length (1024 bytes in USB 2.0). A good
text on USB is available.6

Software
The software consists of two inde-

pendently compiled and linked soft-
ware executables: the host software,
and the target software. The host com-
puter is a PC with an Intel IA32 pro-
cessor (Pentium) running Windows.
The target is a Cypress EZUSB pro-
cessor (derived from the 8051) running
just the target code image—no oper-
ating system or scheduler. Each

 Jul/Aug 2004 7

Figure 6—Host software source tree.

requires a different software develop-
ment system.

Run-Time Software
The description of the tools below

is of interest if you want the compile
or change the software, which most
people will not want to do. To just run
the VNA software, the following bina-
ries are needed:
• VNA host executable file,
• Microsoft .NET 1.1 Common Lan-

guage Runtime (CLR) package,
• Host-compiled help file,
• VNA target (EZUSB processor) ex-

ecutable file,
• USB device driver file—supplied by

Cypress: EZUSB.SYS,
• USB .inf file (driver information file)

also supplied by Cypress.
EZUSBW2K.INF.

Target Software
The target software was developed

in C using the AnchorChips USB frame-
work. This is available on the Cypress
Web site for free in the EZUSB devel-
opment download package. Literally,
the framework is a couple of C module
skeletons. You just need to fill in the
various USB endpoint handlers and
strip out anything you don’t need, which
isn’t much. Getting this up and running
on the target was really fast. After find-
ing a hardware bug (two missing pull-
up resistors), the framework came right
up and ran. From that point it was a
matter of adding functionality to the
target through about four prototype
builds. Each prototype added features
over the previous build as we noted any
errors in execution. These were usually
quickly tracked down to the last added
changes. Two tricky parts: The DDS
chip comes out of reset at a slightly
higher reset voltage than does the
EZUSB processor, so some delay cycles
were added to the USB code before it
tried to initialize the DDS. The paral-
lel interface was used on the DDS, since
the chosen EZUSB device (AN2135) has
an 8-bit parallel interface. Two I/O lines
on the EZUSB are used for RD and WR
lines to the DDS chip. Some have re-
ported difficulty using the serial inter-
face on the Analog Devices DDS chip,
but the parallel interface was problem
free. Secondly, the USB device is hap-
pier with exactly 64-byte bulk packets,
so they are always sent this size. Inter-
estingly, only one bulk-type packet is
sent per frame, so sending 1-byte or 64
does not change the effective rate of
packets per second because the frame
rate does not change with packet size.
Thus, for maximum throughput, 64 byte
buffers should be used.

Host Software
The host software was written in

Microsoft C++ .NET 2003. This is the
most current version of the Microsoft
C++ compiler. The standard edition is
available at a reasonable price.
Microsoft used the name .NET (dot
NET) to reference a lot of different prod-
ucts and services, which has confused
people as to what it really is. The C++
.NET product contains a run-time li-
brary and a compiler/debugger. The
common-language run-time library
(CLR) provides a language-independent
environment to execute the Microsoft
Intermediate Language (IL), which is
just in time compiled. It handles
memory management and garbage col-
lection (freeing up unused memory).
This is pretty traditional for Basic, but
novel for C and C++, which previously
required the software developer to ex-
plicitly control the lifetime of objects
and variables in memory. According to
some, memory leaks and lifetime man-
agement constitute the largest category
of programming errors in C and C++,
and .NET is supposed to help minimize
these types of errors. The same CLR
supports Basic, C# (C-sharp) and C++,
so mixing languages is possible. The
2003 edition of .NET supports a GUI
designer for C++. After manually con-
structing several windows and dialog
boxes in the 2002 edition, it’s a relief to
have that task partially automated.
Programming in .NET is a lot different

than standard C++. Reading the step-
by-step tutorial book and going through
the exercises is a must unless you are
already familiar with .NET. Fortu-
nately, the book and standard-edition
compiler can be purchased together as
a set at about the same price as just
the compiler itself—if you do some shop-
ping. The GUI designer has its own
unusual way of constructing code. We
chose to rewrite the initial host software
prototype into a style better aligned
with how that designer works. This
made subsequent changes and espe-
cially additions a lot faster.

The VNA application consists of a
number of software modules:
• The main program VNAR2, which

holds the primary program control
and display window

• Several dialog-box modules (calibra-
tion, numeric entry, etc.).

• Several utility modules that provide
some general computations with
complex numbers, and translate
values into screen coordinates

• A wrapper module to encapsulate the
interface to the USB device driver

• Several resource files (RESX) that
hold the resources for the display-
able windows
The source tree for the host program

is shown in Fig 6. Microsoft .NET C++
has an unusual approach to its file-
naming convention: For the designer-
generated code, the .h file holds most
of the executable code, while the .cpp
file contains a few headers. Form1 is
the main program, holding the top-
level display and control window
(Form1.h), and is also the entry point
to the .NET program (Form1.cpp). For
non-designer generated code, we chose
to adopt the opposite convention by
declaring class, module, and subrou-
tine interfaces in .h files, putting the
class methods and subroutines in the
.cpp files. Old habits die hard.

Calibration contains the interface to
the test-fixture calibration routines and
the computations for deriving a virtual
s-parameter error matrix equivalent to
the fixture’s influence on the measure-
ment. DisplayRoutines contains code to
derive screen coordinates for the display
window given rectangular or polar dis-
play coordinates. In addition, it contains
FrequencyGrid, CalibrationDatSet, and
Detector class definitions and methods.
The frequency grid allows decoupling
the number of data points measured by
the VNA in a single sweep from the dis-
play resolution of the screen display it-
self. InstrumentCal contains the menu
interface and methods needed to per-
form the calibration of the individual
AD8302 detectors.

8 Jul/Aug 2004

The NumEntBox routine contains
methods to allow direct entry of the
start and stop frequencies or levels
when a large numeric indicator is
double-clicked. The EZ_USB_interface
contains a wrapper for interfacing to
the Cypress EZUSB.SYS low-level
device driver.

In addition, several support data
files are needed:
• The binary executable code for the

target, which the host application
reads and downloads to the target
through the USB interface

• A calibration data set file. The appli-
cation writes this file with calibra-
tion parameters after a calibration
is performed. It can also be read by
the application to retrieve previously
saved calibration parameters. The
data in the file is stored in binary
format.

• Export files. The host software has
an option to generate measured s11
and s21 values in a tabular format
as a text output file. There are sev-
eral standard file-header and polar/
rectangular formats, which support
several popular simulation and
CAD packages. This allows mea-
sured device parameters to be di-
rectly imported to those CAD pro-
grams as an s-parameter model.

• A compiled help file was generated
to provide help for the VNA; it’s
compatible with the Microsoft
HTML help engine (which requires
IE4.0 or later).
The interface to the USB driver

was—and is—pretty tricky. We’re not
altogether satisfied with the result. The
driver was written pre-.NET and it can-
not be invoked directly by a .NET pro-
gram. Microsoft provides a P/Invoke
command that marshals data into a for-
mat compatible with direct API calls to
Windows. The calls have to be proto-
typed so the compiler knows how to call
them; hence, each one was done by
hand. (There are about 10 calls in the
driver.) The variables passed to the
driver are somewhat complex, and they
have to be described to the compiler as
well. To describe these variables, sev-
eral header files from the Windows
Device Driver DDK need to be included.
Microsoft distributed the DDK beta
version free of charge, but now charges
for the completed version. Worse yet,
#including the header files breaks al-
most all .NET code.

The strategy was to build a .CPP
and an .H file for the wrapper. The .H
file describes the interface to the wrap-
per to the compiler and other .NET
modules. The .CPP file includes the
actual code, as well as the #include
files. Then that .CPP file is compiled

without the run-time library, and that
.CPP file is not exposed to other .NET
files, only the linker sees it; however,
other modules know how to call the
wrapper because of the .H descriptions
which they #include. This worked in
the 2002 edition, but broke in the 2003
edition. The 2003 edition requires that
all class methods and class variables,
whether public or private, be declared
in the CPP file and be identical to
those exposed in the .H file. The #in-
cludes needed to do this immediately
to break the compilation of all the
other .NET modules. A temporary
solution was to bury the variable defi-
nitions inside the methods of the
wrapper class as automatic variables.
This way they are never exposed as
an interface or class variable of the
wrapper itself. Unfortunately, this
makes the saving of driver state in a
private-class variable difficult, since
useful variables cannot be declared.

We ended up throwing away much
of the wrapper code that made a clean
wrapping of the driver, and ended up
just re-acquiring driver data inside ev-
ery method every time it is called.
There are probably several better
ways to solve this significant problem.
The byproduct of our approach is that
you need to have several of the header
files from the DDK to compile the ap-
plication, since we cannot distribute
them. It is probably possible to write
the driver wrapper as a .DLL in an
older version of C++ and avoid many
of these issues.

USB Device Driver and Initialization
USB is a plug-and-play interface in

Windows. To associate a device driver
to a device, Windows needs to know the
ID of the USB device that is installed
and which device driver to connect to
it. When the VNA is plugged into a
computer for the first time, the new-
hardware-detected wizard is called by
Windows. It causes the VNA to enumer-
ate without any code loaded into it. The
Cypress EZUSB will answer this enu-
meration request with the VID (Vendor
ID) and PID (Product ID) code of the
EZUSB processor. Then Windows will
pop up a dialog box and ask the user to
choose between supplying a disk file or
letting Windows search for the file. In
the VNA package, an .inf file (driver in-
formation file) supplied by Cypress tells
windows to use the EZUSB.DRV driver
file when the VID_PID device is con-
nected. The wizard makes an entry in
the registry associating the VID_PID
with the device driver so that the wiz-
ard and user dialog box don’t have to
be displayed again. One needs to copy
the EZUSB driver into the driver di-

rectory in Windows, which is different
for different versions of Windows, to
use it. (In WinXP, it’s \Windows\
System32\Drivers.) Having done that
the first time, Windows can find and
load the driver anytime one plugs in
that USB device.

The USB interface to Windows is
fairly complex, and writing device
drivers is not a trivial task. So the
driver supplied by Cypress is used for
the VNA. It’s a very low-level driver,
but we’ve had good results with it so
far. It does have a few bugs. Those that
are known have been avoided in the
wrapper module code.

Other than the wrapper problem,
very few issues were encountered in
constructing and debugging the NET
code. The 2003 version of the C++
.NET debugger is a lot more stable
than the 2002 version.

HTML Help
A help package was generated for

the VNA using the Microsoft HTML
Help Compiler 1.4, available for free
from the Microsoft Web site. There’s
also a good tutorial available on the
Web7 about how to use this tool to
build help and context-sensitive help.
Each help topic is actually an HTML
page; the compiler links all the pages
into a single compressed binary file
using the .chm suffix along with the
table of contents, index, and search
tags. The tags can point within the file
or across the Internet, but we decided
to leave all of them within the com-
piled file so that an Internet connec-
tion is unneeded to use the help file
— or the VNA! The computer does re-
quire IE 4.0 or later to view the help
topics since they are HTML. This type
of help interface should look familiar
to most Windows users.

Available source code can be found
at www.arrl.org/qexfiles.
Calibration and Error Correction

All s-parameter measurements
made by the VNA need to be calibrated.
The actual measurement occurs on the
printed circuit board itself, which is
removed from the device under test
(DUT). The connecting leads and com-
ponents on the circuit board, connec-
tors, interconnecting cables to the DUT
and measurement imperfections of the
components transform the measure-
ment values. Additionally, the VNA
does not have an absolute amplitude
or phase reference, but only a relative
reference. In practice, error correction
and calibration are combined into a
single compensation to the measure-
ment. Different cable lengths may be
needed for different measurements

 Jul/Aug 2004 9

and the cable length significantly
affects the measurement. Thus, cali-
bration is usually required for each dif-
ferent test-fixture setup. The host pro-
gram has a mode to take a calibration
set and store it with a descriptive file
name to be recalled as needed.

Calibration involves compensating
the phase delay of the instrument and
the interconnecting cables. It also com-
pensates for amplitude variation with
frequency. Because the VNA is really
only half a network analyzer (forward
direction only), the TRL technique can-
not be used. The TRL technique can
avoid the need for precision standards.
Instead, calibrations for s21 and s11
are derived independently using ac-
curate RF loads—well, we hope they’re
accurate.

Transmission Calibration (s21)
The transmission calibration (s21) is

easier to understand. There are two in-
terconnecting cables—one from the TX
connector to the DUT, and another
from the DUT to the RX connector. In
the through-calibration mode, these
two cables are disconnected from the
DUT, and directly connected together
with a very short connector called a
“bullet.” The software makes the as-
sumption that the bullet has no length
and is a perfect impedance match. That
would be a poor assumption at micro-
wave frequencies, but at 120 MHz, it’s
not too bad. The transmit signal is then
swept across the frequency range of the
instrument and the received magni-
tude and phase recorded for 1024 dif-
ferent discrete frequencies. The phase
delay and amplitude received are com-
puted and stored in a table by fre-
quency. Obviously, longer cables would
have greater phase delay and perhaps
more attenuation at higher frequen-
cies. The RX port is terminated on the
circuit board with a fairly accurate
50-ohm resistive load. Similarly, the TX
port is sourced from a fairly accurate
50-ohm resistive pad at the output of
the TX buffer amplifier, resulting in a
good source match. To apply the trans-
mission calibration against the mea-
sured DUT data, the measurement of
s21 of the DUT is divided by the re-
corded calibration value at the same
frequency. Since both these data are
complex numbers, this involves using
complex division.

21

measured
21actual

21 Cal
s

s = (Eq 1)

If the measured value of s21 were
exactly the same as the stored calibra-
tion constant, then s21

actual would be
1.0+j0, signifying that the DUT had no Figure 7—Fixture Calibration Menu.

Table 1
Reflection coefficient for terminated, shorted, and open loads in polar and
rectangular coordinates.

Γ Polar Coordinates Rectangular Coordinates
Load Magnitude Phase Real Imaginary
Short 1 ±180° –1 0
50 Ω 0 arbitrary 0 0
Open 1 0° +1 0

gain, loss, or phase shift. Since the DUT
does have s21 imperfections, Eq 1 just
derives the difference between the DUT
measurement and the calibration mea-
surement, thus removing most instru-
ment and interconnection cable errors.

Reflection Calibration (s11)
The reflection calibration (s11) is a

bit more complex. Three calibration
runs are made using different loads
attached to the end of the TX cable
that has been removed from the DUT:
1) with a 50-ohm load, 2) with a
shorted load, and 3) with an open load.
The accuracy of these calibration loads
directly affects the correction accuracy
of subsequent measurements. Table 1
shows the value of the reflection coef-
ficient Γ for each load type directly at
the load itself, assuming that they are
perfect loads, which they are not. The
VNA instrument measures a value for
Γ that is rotated in phase and attenu-
ated in magnitude by the interconnect-
ing cables, PC-board traces, and
components in the cable and instru-
ment itself. The calibration computa-
tion involves de-rotating the measured

value by the calibration phase delay,
and adjusting the measured magni-
tude by subtracting the reflection cali-
bration amplitude component. This
calibration computation must be done
at each frequency.

The three load components lie along
the center horizontal straight line on
a Smith chart, a short being at the left,
50-ohm in the center, and an open on
the right. See Fig 8. The calibration
measurement will indicate instead
three points on a line that is rotated
from the horizontal position by the
amount of phase delay in the trans-
mission cable plus the delay internal
to the instrument itself. The amount
of rotation is frequency-dependent.

After de-rotation to the horizontal
position, the three measurements will
not lie exactly on the ideal positions
on the Smith chart listed in the table,
but will be offset by the remaining
measurement errors. Before the de-ro-
tation, the amplitude measurement of
the DUT is scaled differently on the
left and righthand side of center (low
and high resistive components, respec-
tively) using the short and open cali-

10 Jul/Aug 2004

bration values as full-scale (left and right, respectively),
and the 50-ohm value as a zero scale constant. This is be-
cause some measurement errors are dependent on the
impedance seen by the directional coupler itself. After this
adjustment, the value is de-rotated by the calibration re-
flection phase delay value, which results in the final value
for Γ. Fig 7 shows the fixture calibration menu, with the
short calibration completed.

We can place reflection measurement errors into three
types:
• Ed Directivity error—this error is caused by leakage in

the directional coupler and impedance mismatches be-
tween the VNA and the DUT reflecting additional en-
ergy.

• Es Source mismatch error—this error is caused by im-
pedance mismatch between the signal source and the
directional coupler. In the VNA, an attenuator pad is
used between the buffer and the directional coupler to
provide a reasonably good match, but it’s not perfect.

• Et Tracking errors—these are errors in the measuring
circuits that provide the magnitude and phase values
and include test-cable artifacts.
In his book on microwaves, Pozar describes how to ana-

lyze and derive these reflection measurement error terms
for the one-port calibration.8 The technique models the
three errors as a virtual s-parameter error matrix inserted
between the VNA and the DUT.

Refer to Fig 9 for s-parameter definitions. In an s-
parameter matrix, the forward input voltage, a1, reverse
input voltage, a2, forward output voltage, b2, and reverse
output voltage, b1 are related by the s-parameters:

2222112

1221111

sasab
sasab

+=
+=

(Eq 2)

Thus the voltage emerging from the network lefthand
side, b1 is the sum of the input reflection property of the
network times the input voltage a1, plus the reverse isola-
tion of the network times the voltage supplied into the
network from the right-hand side, a2. We substitute the
error terms into the s-parameters of the virtual error ma-
trix:

s11 is the source directivity error, Ed.
The product s21s12 is the reflection tracking error, Et,

which we can allocate between the two terms as we like—
in this case, setting s21 to unity, and s12 to Et (see Fig 10).

s22 is the source matching error, Es.

If we place the DUT that has an actual reflection s11
actual

(Γ actual) on the output of this virtual S-parameter error
network, then from the input of this error network we
measure s11

measured (Γ measured). It can be shown that the
actual measured value of the DUT looking through the
error matrix is:

td
m
11s

d
m
11a

11
E)E(sE

Es
s

+−

−
= (Eq 3)

The derivation requires a bit of algebra and Pozar cov-
ers this in his book. We have three unknown terms and
three measurements, so it is possible to solve for the three
error terms. The solution to the first term is:

m
load11,d sE = (Eq 4)

This is because the reflection from a perfectly termi-
nated load is zero. Thus a2 of the virtual error matrix is
zero, and the Es and Et terms fall out of the bt voltage term
(reflected signal). Similarly:

Figure 8—Smith Chart plot of ideal calibration load points after
computationally removing the test cable transmission line length.

Figure 9—
S-parameter
definition.

Figure 10—
S-parameter
error matrix.

()
m

open11,
m

short11,

m
open11,

m
short11,

m
load11,

s
ss

ss2s
E

−

+−
= (Eq 5)

and

()()
m

open11,
m

short11,

m
load11,

m
short11,

m
load11,

m
open11,

t
ss

ssss2
E

−

++
= (Eq 6)

Et includes the phase delay and attenuation of the
interconnecting cable between the VNA and the device
under test. Thus, different calibration files need to be col-
lected for different cabling setups, since Et will be differ-
ent in each case.

D. Pozar’s book on microwave engineering covers the

 Jul/Aug 2004 11

topic of VNA calibration and compen-
sation. In the host program, the cali-
bration routine guides the user
through four test setups, and makes
four measurements—short, open,
load, and through. All are swept over
the complete frequency range of the
analyzer. It then derives the values of
Ed, Es, and Et over frequency, and also
derives the transmission calibration
term discussed previously. The three
reflection error terms, as well as the
raw reflection calibration data, can be
plotted on the polar chart to give an
idea of what they look like. The cali-
bration routine stores a table of the
three derived error terms, along with
the s21 transmission calibration value,
each at 1024 frequencies, in a file on
disk. The name of the file can be se-
lected at the time the calibration file
is saved.

The calibration function also allows
loading a named calibration file instead
of having to repeat a previous calibra-
tion run, which saves a lot of time. This
makes it easier to have different cali-
bration files for each test setup. The raw
data is also saved to the file allowing
rerunning the calibration and chang-
ing only one measurement type (for ex-
ample “through”), and then saving the
cal data set. The raw data will be over-
written by any new measurements
while preserving raw data not re-col-
lected. Then the cal file can be saved
again. This updates the cal data set
with only the new data type. This saved
a lot of time during the debug cycle.

Fig 11 shows the measurement of
a shorted cable without fixture cali-
bration applied. Without calibration,
the short describes a circle near the
edge of the polar chart, illustrating
that the connecting cable between the
short and the VNA rotates the phase
angle of the short. After the fixture
calibration is applied (Fig 12), the
cable phase rotation has been removed
and the short shows up as point on
the left side of the polar chart, with
all frequencies being measured fall-
ing on the same point (0 ohms).

Phase Measurements &
Detector Calibration

At first, a simple technique was
used to translate the phase detector
analog measurements measured by
the AD8302 from voltage to phase, in
degrees, with respect to the reference
signal. The arctangent of the I-mea-
surement divided by the Q-measure-
ment, with appropriate correction for
the measurement quadrant, was uti-
lized. Unfortunately, this simple tech-
nique suffers from a significant error
because of phase-detector saturation

Figure 11—Shorted cable without fixture calibration.

Figure 12—Shorted cable with fixture calibration applied.

Figure 13—Error of phase reading over
360°caused by detector saturation near
zero and +2.0 V.

in the AD8302. Particularly near 0 V
output, the phase-detection gain drops
non-linearly. The range near positive
output (+1.8 V) is less saturated, but
the actual positive voltage peak value
varied a lot from device to device. In
one case, it significantly exceeded the
value of Vref from the specific device
being measured.

The nature of the error causes a
somewhat sinusoidal error in the
phase reading— the phase varies both
above and below the actual value. This
error was particularly significant in
group-delay measurements, since the
group-delay routine differentiates the
phase slope at adjacent frequency
sample points. Fig 11 shows the

12 Jul/Aug 2004

slightly oblong shape of the phase re-
sponse caused by detector saturation.

A new phase calibration routine
was devised that uses a length of co-
axial cable as a reference element.
This calibration result is used to com-
pensate the converted phase values.
A fixed length of cable has a constant
time delay, and thus has a linear phase
change with frequency. The detector
calibration routine measures a small
fixed length of cable and compares it
with the actual phase-detector mea-
surement. The software then stores a
table containing the difference, in de-
grees, between the measured phase
and the phase calculated by linearly
interpolating the cable phase. That is,
it finds two points in frequency that
differ in phase by 360º because of the
calibration cable, then derives the
phase at any frequency in between
using a linear fit to the two endpoints.
This phase difference is stored in a
table with one-degree resolution.

A separate table is generated for
the transmit and receive AD8302
phase detectors. This same calibration
routine also finds the midpoint of each
phase detector’s output range by find-
ing the detected output voltage— ap-
proximately +0.9 V, but slightly differ-
ent from device to device—wherein the
reference cable produces 0º, 180º and
360º phase differences at the same
output voltage. The process converges
in about three iterations. The algo-
rithm thus fully characterizes each
AD8302 by its individual performance.

This phase calibration process is
done separately for the TX and RX
phase detectors, since they are differ-
ent physical devices and have differ-
ent errors. The detector constants and
correction tables are stored in a small
detector calibration file in the program
startup directory—the directory
where the VNA program starts execu-
tion. The detector calibration does not
change with the test setup; thus it only
needs to be measured once, then the
values are relatively permanent. The
software automatically looks for and
loads this detector calibration file on
startup and provides a warning mes-
sage to run the one-time detector cali-
bration routine if the file cannot be
found. A menu option to run the de-
tector calibration allows the initial
generation and storage of the con-
stants in this file using a couple of
short test cables. Running the detec-
tor calibration routine overwrites any
existing detector cal file.

A small residual error remains af-
ter this improved calibration tech-
nique, which can be seen most easily
when measuring group delay. Fig 14

Figure 14—Phase response before and after detector calibration.

Figure 15—Transmission Magnitude, Phase and Group Delay of a 3 m test cable.

Figure 16—Return loss of KT34XA antenna through 300 feet of hardline. Vertical scale is
5 dB/div.

shows the phase response of an ap-
proximately 3 m long cable with and
without this error correction.

Fig 15 shows the transmission

amplitude response, phase and
group delay of a 3 m long cable.
The group delay scale is 10 ns per
division, thus this test cable has

 Jul/Aug 2004 13

about 14 ns of delay. A perfect result
would be a straight horizontal line for
group delay. This measurement was
made by differentiating the phase at
each incremental frequency sample,
thus it produces the noisiest measure-
ment. When the delay differentiation
is spread across several samples
(called the frequency aperture of the
group-delay measurement), the errors
are significantly filtered. The result
shown in the figure we consider to be
quite good. Seven different detector-
calibration algorithms were tried to
get to this point. The drop in delay
above 100 MHz is caused by reference-
signal degradation, in turn caused by
the DDS’s reconstruction low-pass fil-
ter cutoff limitation described earlier.

Software Source Code
VNA source files for both the tar-

get processor and the host processor
have been made available in open
format on the Web for amateur and
non-commercial use. It’s hoped that
readers will add useful and interest-
ing functionality to the VNA and make
any changes similarly available for
amateur and non-commercial use.

Software Tool Sources
The development software can be

purchased inexpensively. The target is
written in C and 8051 assembly.
Cypress provides a limited-capability
free copy of the Keil compiler in its de-
velopment package. Another compiler
package, Reads-51, which is free for
non-commercial use can be down-
loaded from the Web,9 but the target
software has not been ported to that
package yet. The host software is writ-
ten in C++. The Microsoft compiler can
be purchased as part of the Microsoft
C++ .NET 2003 Step-by-Step Deluxe
Learning Edition, which contains both
the excellent Step-by-Step book and
the C++ standard-edition compiler,
bundled together.10 The set can be
found at local bookstores, or at a dis-
count from several Web-based book-
stores. We found it commercially avail-
able on the Web for less than $80. The
HTML Help compiler v1.4 is free from
the Microsoft Web site, and a good tu-
torial is available by Char James-
Tanny, as was mentioned earlier. The
installer was generated using the Jor-
dan Russell INNO installer program,
which is free for any use (commercial
or not) and is very simple to use.11

Applications
There are a large number of appli-

cations for a VNA. We’ll examine a
couple of them here.

Figure 17—Return loss of Fig 16 from 13.5 MHz to 14.5 MHz. 26 dB return loss (best case
at 13.94 MHz) is an SWR of 1.105 (at the ham-shack end of the feed line).Vertical scale is
5 dB/div.

Figure 18—Return loss of Fig 17 with fixture calibration applied (the fixture is the
instrument itself and one m of cable). Note the best-case return loss is now 28 dB at a
frequency of 13.96 MHz (an SWR of 1.083). Vertical scale is 5 dB/div.

Antenna Return Loss (SWR)
One of the most common measure-

ments made is the standing wave ra-
tio of an antenna. A low SWR means
that the antenna input impedance is
close to that of the measuring refer-
ence impedance. Return loss is the
common term for an equivalent mea-
surement, that being the ratio of the
reflected voltage to the incident volt-
age, usually expressed in dB. To con-
vert from return loss to SWR, the
following formulas are used (S = SWR,
ρ= reflection coefficient, RL = return
loss in dB):

ρ1
ρ1

S
−
+

= (Eq 8)

So, for example, a return loss of
20 dB is a reflection coefficient of 0.1,
and an SWR of 1.22. A return loss of
10 dB is a reflection coefficient of
0.316, and an SWR of 1.92.

The following measurements show
the magnitude of the return loss ver-
sus frequency for a KT34XA antenna
at the end of 300 feet of hard-line
cable. The resonance points are clearly
visible. The phase part of the imped-
ance is that at the ham-shack end of
the cable, not at the antenna. Fig 16
shows the return loss at 5 dB/div of
the antenna swept from 1 MHz to
50 MHz. The 20-m, 15-m and 10-m

⎟
⎠
⎞

⎜
⎝
⎛−

= 20
RL

10ρ
(Eq 7)

14 Jul/Aug 2004

Figure 19—Return loss of Fig 18 on a polar scale.

Figure 20—Return loss of Fig 19 with calibration applied. Note the significant amount of
phase rotation that is removed with instrument calibration and just 1 meter of cable
correction.

band resonances are easily seen. Fig
17 shows a closeup of the return loss
from 13.5 to 14.5 MHz; Fig 18 shows
the same reading after the instrument
has been calibrated with a 1-m length
of cable. This short cable is used to con-
nect to the analyzer to the hard-line
cable and thus represents the load
that would be seen by a transmitter
connected to the cable. Note that the
apparent return loss is improved at
some frequencies because imperfec-
tions in the instrument and direc-
tional coupler have been subtracted
out of the measurement. Fig 19 shows
this same closeup on a polar plot. Fig
20 is the same polar plot but with fix-
ture calibration enabled. Note the ro-
tation of the polar plot.

The instrument limitation for re-
turn loss measurements is about
30 dB, and this degrades by a few dB
at frequencies above about 50 MHz.
The apparent return loss of the an-
tenna looks better than it really is at
higher frequencies because of the in-
creasing loss of the 300 feet of hard
line with frequency.

Notes
1Universal Serial Bus Specification, Revi-

sion 1.1, Compaq, Intel, Microsoft, NEC,
September 23, 1998, available at www.
usb.org/developers/docs/.

2AN2135 Microprocessor Data sheet and
Cypress EZUSB Development kit are
available from Cypress Semiconductor,
Inc., www.cypress.com, look under USB
Full-Speed Peripherals.

3Analog Devices, Inc, AD8302 data sheet,
Rev A., www.analog.com.

4Analog Devices, Inc., AD9854 DDS data
sheet, Rev B, www.analog.com

5Minicircuits Inc., directional coupler PDC-
20-3, datasheet available at www.
minicircuits.com/dg03-192.pdf.

6 J. Axelson, USB Complete, 2nd edition,
Lakeview Research, ISBN 096508195-8,
www.lvr.com.

7C. James-Tanny, Creating HTML Help with
Microsoft’s HHW, 2003, JTF Associates,
Inc,www.mvps.org/htmlhelpcenter/
htmlhelp/hhtutorials.html.

8D. Pozar, Microwave Engineering, Addison
Wesley, 1998, ISBN 0-471-17096-8.

9Rigel Corporation Inc, Reads-51 package,
PO Box 90040, Gainesville, FL 32607,
www.rigelcorp.com.

10J. Templeman, A. Olsen, Microsoft Visual
C++ .NET Step by Step, Version 2003,
Microsoft Press, ISBN 0-7356-1907-7 is
just the book; ISBN 0-7356-1908-5 is the
Deluxe Learning Edition that includes the
C++ standard edition compiler package.

11Jordan Russell’s software, INNO installer
program, www.jrsoftware.org/isinfo.
php.

