SDR from DC to (almost) Daylight

Tom McDermott, N5EG

tapr.org/~n5eg

Medford, Oregon

June 3, 2016

Outline

- SDR Applications.
- Amateur SDR Generations:
 - 1st generation analog Direct Conversion IQ technology.
 - 2nd generation digital Direct Conversion IQ technology.
 - 3rd generation hybrid conversion IQ technology.
- HF, VHF/UHF, & Millimeter Wave Technologies
- · References.

Some Applications of SDR

- 1. Local radio (of course).
 - From Headless (computer GUI) to Full-knobbed box.
- 2. Remote radio.
 - Internet transceiver, spectrum display (graphics compression).
 - Reverse Beacon Network (RBN) receiver / CW skimmer (many / all bands simultaneously).
- 3. Ionospheric Echo Sounding.
 - Passive or Active sounding.
- 4. HF Vector Network Analyzer.
 - Coherent receiver → good dynamic range.
- 5. AMSAT Phase 4 satellite ground stations.
- 6. High Speed data linking.
 - UHF & above, typically Ethernet.

Local SDR Radios – Headless to Fully Knobbed

"Headless"

"Partially / Remotely Knobbed"

"Fully Knobbed"

Local / Remote SDR

- Ethernet network makes remoting an SDR possible, but some issues:
 - Internet Server function may be needed (normally not in the radio).
 - Latency (for remote transceiver).
 - Audio Processing (from raw SDR data stream).
 - Graphics compression may be needed for spectral display.
 - Fail-safe Transmit time-out, High SWR lockout, etc.
 - Accessory control (AC Power, Rotator, Antenna switch, etc.)

Local GUI / Internet Server / VPN Server (e.g. SoftEther)

Well Known Web SDR

Supports more than two hundred simultaneous users – each receiving a different channel.

Wideband Receive Antenna

SDR Web Servers

- SDR server allows client(s) to access your SDR over local network or Internet.
 - Many packages available providing varying functionality. Most usually fit into one of two basic groupings:
 - 1. Many clients, many narrowband streams. Each client statically sets frequency of their own narrowband receiver, or
 - 2. Few clients, high functionality. Spectrum display, interactive tunable receiver, transmitter. Mobile device support, etc.
 - Wide range of servers, from high-end desktop to Raspberry Pi. Some examples:
 - 1. ghpsdr3 (John Melton GOORX/N6LYT). Linux server for OpenHPSDR devices, others radios have been added.
 - 2. OpenWebRX (Andras Retzler, HA7ILM) Open Source. Linux based. http://sdr.hu/openwebrx
 - 3. Numerous pages on Raspberry Pi as web server. GIYF (google is your friend).
- http://websdr.org/ Links to hundreds of SDR servers (receivers) you can listen to in real time.

SDR Echosounding Setup

SDR Ionospheric Echosounding Diagram

SDR Echos - 3.6 MHz. Evening

- F layer echos near 1.7 milliseconds. -0.38 Hz Doppler shift.
- Double-transmit echos near 3.4 milliseconds
- Height: 254 km. Vertical Velocity: +15.4 m/sec. Artifact at 4 milliseconds

SDR Vector Network Analyzer

SDR Transmitter & Receiver

Reflection Bridge (for S11 measurements)

AMSAT Phase 4 – High Speed SDR Datalinks

- Ground stations multiplex various user traffic, uplink composite digital data to satellite at 5.6 GHz using SDR radios.
- Ground stations downlink composite digital data stream at 10.45 GHz, demultiplex, distribute to users.
- Users don't directly communicate with the satellite.

Phase 4 – Uplink and Downlink Concepts

FDMA uplink –
 each ground station
 transmits on a
 different channel.

- TDMA downlink traffic destined for each ground station on a different time slot.
- All ground stations can hear all downlink timeslots (broadcast).

Experiments in progress with Ettus, HackRF, BladeRF SDR radios

High Speed Datalinks

- UHF+ SDR units well suited to highspeed point-to-point data links.
- Quadrature Amplitude Modulation (QAM) and Forward Error Correction (FEC) → high throughput.
- Adaptive equalization can combat multi-path distortion.
- GNU Radio is an excellent platform for prototyping and testing.
 - Pre-built modules for:
 - Frequency locking
 - Timing recovery
 - Filtering, Equalization
 - Modulation / Demodulation
 - FEC coding / decoding.

Some Common SDR Architectures

- 1. Homodyne Analog.
- 2. Homodyne Digital.
 - Direct firehose.
 - Digitally down-converted.
- 3. Hybrid (Heterodyne) Digital.
 - Analog down-conversion to lower speed I.F. which can be digitized economically.

1. Homodyne Analog SDR Receiver

- Essentially a Direct-Conversion receiver.
- Down convert R.F. to Zero I.F. (Softrock, FlexRadio 1k, 3k, 5k series, etc.).
 - SSB & CW don't require demodulation just filter and send to speaker.
 - Need a way to reject opposite sideband (negative frequencies):
 - Weaver method, Complex Filter method, Phasing method (Hilbert).
 - FM requires demodulation, AM usually best when demodulated.
- Typical Passband: Minus 24 KHz to Plus 24 KHz. of the channel center frequency using 48ks/s soundcard.
 - Imperfect Mixer, LPF, and Soundcard response all degrade opposite sideband rejection in this approach.

Multiple Soundcards

- Analog SDR requires two soundcards (or equivalent).
 - One to send/receive baseband I & Q samples to the radio from the computer. Normally 24-bit very high performance card is needed.
 - Second to send/receive audio to the headphones (or speaker) and from the microphone. 16-bit lower performance card works just fine.
 - USB headsets have the soundcard functionality built into the headset itself.

A Simple Digital SDR

Why Not ?

- Let's say ... DC ~ 6 meters.
- Spurious Free Dynamic Range ~ 100 dB. LTC2208 ADC 16 bits.
- Nyquist criteria: Fsample > 2 * maximum frequency.
 - Fsample > 54 MHz * 2 = 108 Ms/s.
 - Common sample rate: 122.88 Ms/s (harmonically related to 48K).
- 16 bits * 122.88 MHz = 1.966 Gigabits / second to the computer.
- Add in IP & Ethernet overhead: 3 x Gigabit Ethernet, or 1 x 10GE.
- It's a FIREHOSE !!
 - Whoa! Gulp. Help. Open the pod bay doors, HAL.

2. Homodyne Digital SDR Receiver

- Essentially a Direct-Conversion receiver.
- Down convert R.F. to Zero I.F. (Open HPSDR, Flex 6000, many others).
 - •SSB & CW don't require demodulation filter, decimate, and send to speaker.
 - Need a way to reject opposite sideband (negative frequencies):
 - Weaver method, Complex Filter method, Phasing method (Hilbert).
 - FM requires demodulation, AM usually best when demodulated.
- Typical Passband: Minus 192 KHz to Plus 192 KHz. of the channel. Selectable via Decimation Ratio.
- Typical ADC: 14 or 16 bits. Baseband is ~24 bits (achieved via decimation).
- Very high opposite sideband rejection without adjustment.
- I/O to Computer: 384 Ksps → about 19 Megabits/sec

Decimation

- Reduce the sample rate of a digital data stream.
 - 1. Low Pass Filter the data below the output Nyquist rate.
 - 2. Then throw away most samples, just keep 1 out of every N.
- Example: Decimate by 16.
 - Peak signal increases by 16 times, i.e. 4 more bits needed.
 - Signal-to-Noise-Ratio improves by sqrt(16), i.e. 2 bits.

Ratio of 500,000 to 16 = 31,250

Single Soundcard

Digital SDR eliminates the need for the first soundcard.

3. Hybrid Conversion SDR Receiver

The Spike

- ADC DC offset creates a spike at zero Hertz.
 - Digitally downconvert or offset away from the spike
- Analog mixer LO leakage causes DC offset a spike at the channel center (zero).
 - Reduce LO/Mixer image via calibration.
 - 2. Offset away from the spike.

A few SDR Radios used by Hams

The list of available SDR radios is huge and growing...

- RTL2800 dongle and cousins VHF/UHF receiver.
 - Low cost, but poor dynamic range.
 - Many are web connected.
 - Can be used for ADSB reception at 1090 MHz (aircraft status).
 Networked via websites such as flightradar24.com
- Flex Radio Analog (1k, 3k, 5k series) and Digital (6k series) Radios.
 - Performance span from good to 'best measured' (Sherwood).
- OpenHPSDR / ANAN Digital Radios.
 - Groundbreaking design, excellent performance, open source.
- Red Pitaya, SDRPlay, many many others.
 - Typically lower-cost, low-to-moderate performance.
- Incrementally Icom / Kenwood / Yaesu are becoming more SDR-like.

New CMOS Silicon

- Integrated RF/Mixer + LO synthesizer chips becoming available.
 - Analog Devices, Lime Micro, Mirics to name a few.
- Provide range of input frequencies.
 - Mirics: 150 KHz 2 GHz. [used in SDRPlay]
 - Analog Devices: 100 MHz 6 GHz [used in Ettus SDR radios]
 - Lime Micro: up to 12 GHz (multi chip solution).
- Some paired with dual ADC + DSP + Host interface chip (USB typical).
- Some provide AGC, typically not for SSB.

Analog Devices AD9361

- Single Chip 70 MHz 6 GHz.
- 2 Rx + 2 Tx (2x2 MIMO)
- 12-bit ADCs and DACs
- Channel BW: 200 KHz to 56 MHz
- Includes LNAs, LO Synthesizer, and RF AGC.

SDR Play

- 150 KHz ~ 2 GHz. Like an upgraded RTL2800.
- AGC most useful with AM / FM. Improves overload issue common in some VHF / UHF very-low-cost receivers.
- Uses Mirics chip set. 8 MHz. maximum BW.

60+ GHz SDR Chipsets

- Growing interest in millimeter wave for 5G. Chipsets for 60-80 GHz available.
- Open source Gnuradio / Hittite drivers: Per Zetterberg.

60 GHz Transmitter board.

Red Pitaya

- Marketed as low cost programmable test equipment (Scope, Spec Analyzer, Bode plotter, etc.)
- HPSDR, HDSDR, PowerSDR, Gnuradio available.
- Xilinx Zynq: FPGA + Dual core ARM A9: Linux
- Two 14-bit ADCs + Two 14-bit DACs // 125 Ms/s

Red Pitaya SDR Measurements

- Ger Metselaar http://www.pa0aer.com/projecten/red-pitaya
- Pavel Demin http://pavel-demin.github.io/red-pitaya-notes/

Sensitivity and Dynamic range poorer than Flex 6500.

Red Pitaya has response roll-off at 50 MHz according to Ger webpage.

Characteristic	Flex 6500	Red Pitaya
Noise Floor	-130 dbm	-120 dbm
3 rd order IM suppression	97 db	75 db

Summary

- Digital and Analog CMOS, FPGA and Computer DSP enable very high performance and/or very low cost SDR radios.
- Initially SDR emulated a traditional radio.
 - SDR applications now reach far beyond just traditional radio communications.
- SDR can be highly configurable.
- SDR forms the basis of low-cost, high performance test equipment.

References

- http://websdr.org links to many SDR receivers available on the web.
- https://softether.org Free, very capable VPN software packages. Windows, Linux, Raspberry Pi 3.
- http://websdr.ewi.utwente.nl:8901/ runs SDR receiver in your browser (no need to install any software).
- http://redpitaya.com/ Red Pitaya website.
- http://openhpsdr.org/ Open HPSDR website.
- http://www.tapr.org/~n5eg This presentation, Echo sounding experiments, links, other presentations.
- https://github.com/Tom-McDermott GNU Radio drivers for OpenHPSDR, other source code.
- http://w7fu.com/ John Petrich's "Ham-Friendly DSP" site.
- http://www.tapr.org/conferences.html ARRL / TAPR Digital Communications Conference (DCC). All things SDR and more.