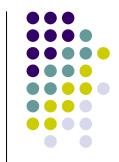
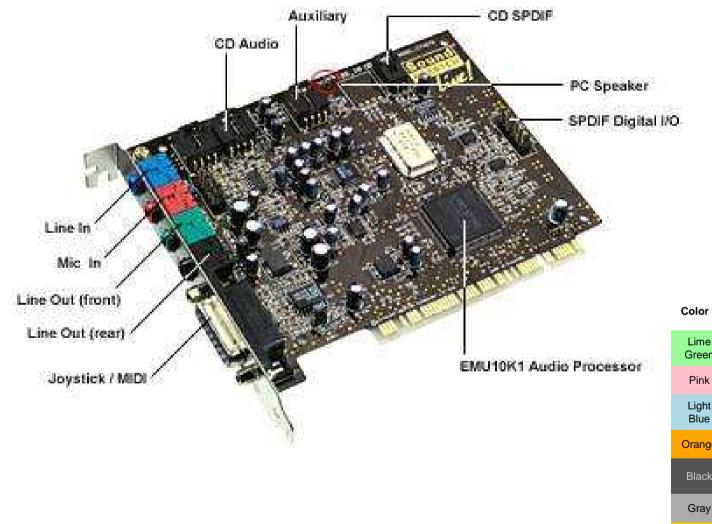


Soundcards for Amateur Radio RVARC Club Meeting – October 1, 2009 Tom McDermott, N5EG

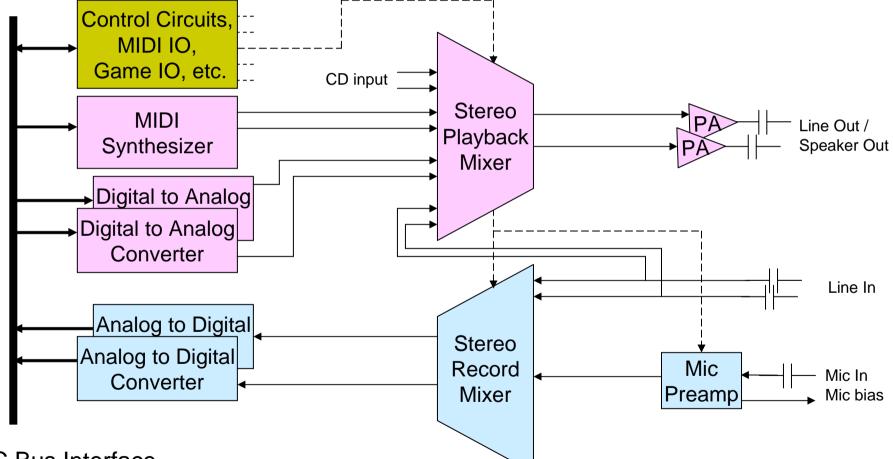

Outline


- Background
 - Block diagram, drivers, other software
- Applications
 - Some common applications
- Performance
 - Specification, types of cards
 - Critical issues

Soundcard Applications

- Soundcards typically used by Amateurs for:
 - Audio Recording and Playback
 - Contesting Microphone in and Line In/Out
 - Music, Video Entertainment, etc.
 - Windows System Sounds
 - <u>Test Equipment</u> (scope, spectrum analyzer)
 - <u>Digital Modes</u> RTTY, PSK31, DRM, others
 - Usually using Mono mode
 - Normally soundcard performance not a problem.
 - <u>Software Defined Radio</u> (SDR)
 - Used as In Phase & Quadrature Phase (I/Q) analog to digital and digital to analog conversion.
 - Requires Stereo connections.
 - Soundcard performance is usually extremely important.

SB Live! (16 bit stereo card)



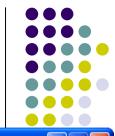
Sound card color code:

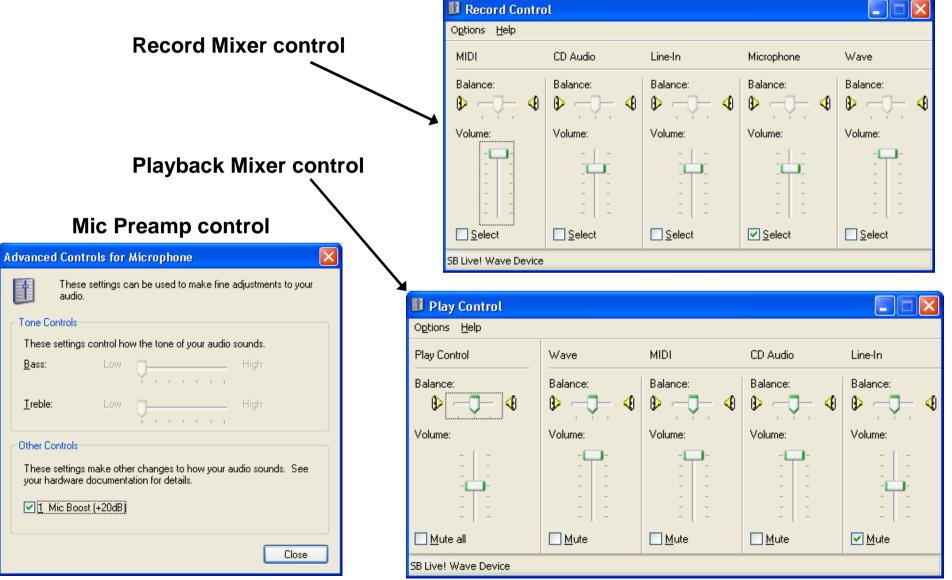
Lime Green	Line-Out, Front Speakers, Headphones
Pink	Microphone In + DC element bias
Light Blue	Stereo Line In
Orange	Center Out and Subwoofer
Black	Analog line-level Rear Surround Speakers for 5.1 and 7.1 systems
Gray	Middle Surround Speakers for 7.1 systems
Gold	Game Port / Midi

Typical Block Diagram

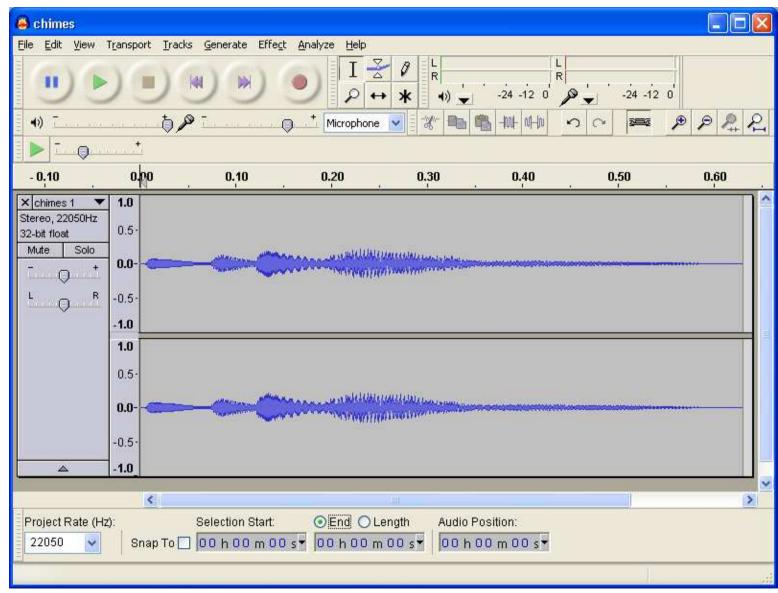
PC Bus Interface

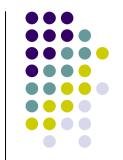
Many soundcards have additional mixer inputs and outputs


Software and Drivers


- Windows XP standard WDM software driver is <u>KMixer.SYS</u> (Kernel Audio Mixer)¹.
 - Mixes multiple PCM audio streams.
 - Performs format, bit-depth and sample-rate conversion.
 - Provides speaker configuration and channel mapping.
 - Unfortunately has 30 milliseconds minimum latency.
- Audio Stream Input Output (<u>ASIO</u>) available for many soundcards (but not all). Developed by Steinberg Media Technologies GmbH
 - Its for Windows systems bypasses KMixer.SYS
 - Provides minimum latency
 - Bits In = Bits out (avoids format conversion)
- <u>Soundvol32.exe</u> You've seen this interface for enabling and disabling inputs and outputs, setting volume and balance levels, enabling the microphone pre-amp, etc.
 - <u>Hint</u>: put a link to it the Quick Launch Toolbar.

Soundvol32.exe




Audio Recording

- Audio Recorders bundled with Windows are sometimes very limited.
- Free excellent program is Audacity, available from Sourceforge.net.
 - Permits recording
 - Allows editing audio waveforms.
- Many ham logging program allow both recording and playback of audio for contests, general operating, etc.
 - Playback can hold canned contest voice messages
 - Writelog can record a contest.
- Some loggers allow control of soundcard in real-time
 - When switching from transmit to receive for example.

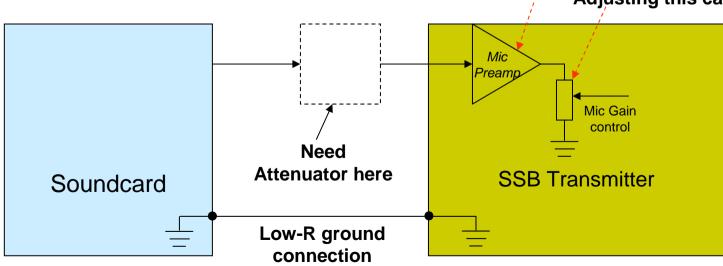
Audacity 1.3.9

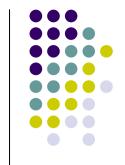
Windows Sound Events

- Windows emits sounds for certain events (Startup, Shutdown, Various warnings, Web page clicks).
 - These are mixed with anything else being generated.
 - Many times heard on-the-air when they should not be.
 - Windows XP provides multiple sound schemes (profiles).
 - 'No Sounds' allows turning off all system sounds. Highly recommend to select this profile before using soundcard with a radio.
 - Control Panel → Sounds and Audio Devices → Sounds Tab → No Sounds.
 - You can change it back to default (or a previously saved profile) at any time.

HF Digital Modes

- Soundcard is used as D-A and A-D converter, usually only mono needed.
- Signals usually have bandwidth of less than 3 KHz (normal SSB rig)
- PC acts as a DSP-based audio modem modulating and demodulating signals from the digitized audio samples.
 - RTTY, PSK31, and SSTV are the most common.
 - Many other modes exist.
- Lots of links to free software.
 - MMTTY, Digipan, MMSSTV, EasyPAL are some favorites.
- CW decoder: CWGet is popular program.


Performance for baseband digital modes


- SSB receiver performs image and opposite rejection soundcard receives MONO audio stream for digitization.
 - Soundcard performance does not impact these.
- Typical 16-bit soundcards have 12-to-15 ENOB (Effective Number Of Bits) [70-88 dB dynamic range].
 - Could impact adjacent-channel audio rejection against very strong signals within the receiver's passband.
 - Narrow IF filters reduce this problem a lot.
- Soundcard output is likely more linear than SSB final amplifier.
 - SSB PA linearity improves when peak power is reduced. But PA distortion still likely dominant over soundcard.
 - Must prevent soundcard clipping on signal peaks.
 - Peak-to-Average-Power ratio for some digital modes exceeds 10 dB.
 - Must exercise care when controlling average power output.

Caution when using soundcard for Transmitting

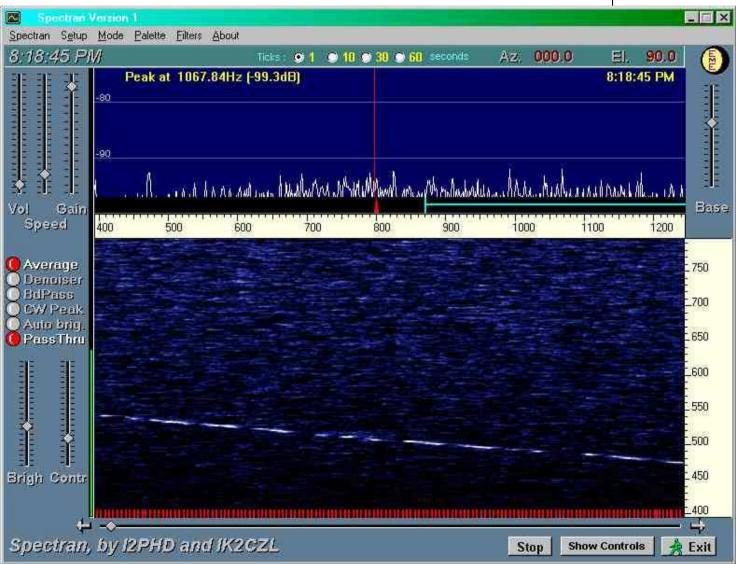
- Amateur HF rigs require about 10 millivolts at the microphone jack input. When the Speech processor is on, it can pick up 1 millivolt level signals.
- Soundcard output is on the order of 1 to 2 volts peak-peak.
- 10000% to 100000% overdrive condition (40 dB to 60 dB).

Overload can occur here. Adjusting this can't fix it.

Common HF Frequencies for digital modes

$\bullet \bullet \bullet$
$\bullet \bullet \bullet \bullet$

Band	Common Frequencies				
160 meters	RTTY: 1.810 occasionally				
80 meters	PSK: 3.580				
	RTTY: 3.610-3.630 less common now				
40 meters	RTTY: 7.040 for DX, 7.080 rare now				
	PSK: 7.060-7.080				
30 meters	10.130-10.145				
20 meters	14.060-14.095. Busiest band for digital				
17 meters	18.100-18.110				
15 meters	21060-21080				
12 meters	24.920-24.930				
10 meters	RTTY 28.080				
	Other 28.110-28.125				


Test Equipment

- Audio Test Equipment software available
 - Oscilloscope
 - Displays time samples of data like a dual-channel oscilloscope.
 - Spectrum analyzer
 - Uses FFT of time data to display spectrum.
 - Audio Performance: RightMark (hard to find now)
 - Characterizes dynamic range, distortion of audio card.

Spectran V2

- Spectrum analysis from soundcard input.
- Popular for weak-signal discovery & capture.
 - Can see signals 'buried' in noise. 241 GHz QSO showing (W) 2SZ & Rx drift.
- Sub one-hertz filter bandwidth possible.

Software Defined Radio (SDR)

- Very popular use of soundcard is as generalpurpose AD and DA converters.
- Left channel and Right channel become the I and Q channels.
- Soundcard is not designed as a general purpose AD and DA converter.
 - Soundcards vary widely performance concerns <u>must</u> be considered.
 - I/O is AC-coupled.
 - Soundcard Performance impacts things like:
 - Real-time spectrum scope bandwidth
 - Dynamic range
 - Opposite sideband rejection

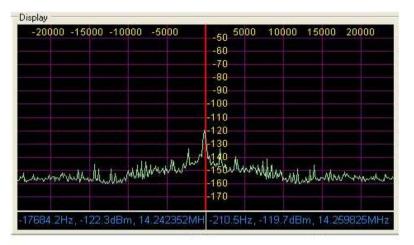
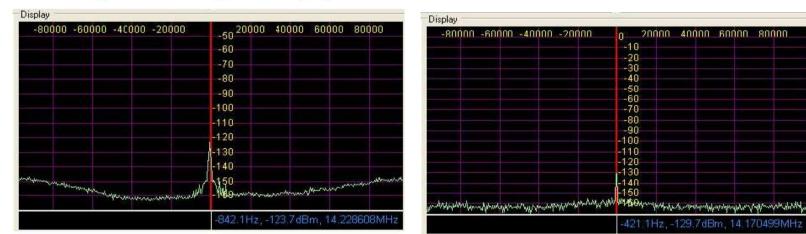
Dynamic Range

- For a perfectly linear ADC
 - Effective Number of Bits
 - (ENOB) = $(SINAD_{dB} 1.76) / 6.02$
- Noise voltage = $\sqrt{4kTBR}$
 - Room temperature, 100 KHz bandwidth, 50 ohms
 - \rightarrow 0.28 microvolts RMS noise
 - Assume 2 volts peak-peak is maximum input level.
 - 0.707 volt RMS / 0.28 μ V RMS = 127.9 dB dynamic range.
 - ENOB = (127.9 1.76) / 6.02 = 20.9 bits is useable.
- Therefore, ADC capable of >= 21 bits ENOB is needed
 - For 20 KHz BW, desired ENOB >= 22.1 bits

Real ADCs for Soundcards

- Soundcards are not designed as a general purpose ADC / DAC card.
- Common issues:
 - Limited frequency response.
 - 20~70 Hertz high-pass (AC coupling).
 - ~20 kHz low-pass for audio (avoid aliasing).
 - ~80 kHz low-pass for 192 ksps soundcard (avoid aliasing).
 - Noise response not flat across passband.
 - DC error.
 - Amplitude and phase mismatch between the left and right channels.
 - A 24 bit ADC always has less than 24 ENOB.
 - Many 24 bit soundcards are 17-19 ENOB.

Some 24 bit ADC converters

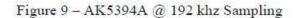

Figure 2 - WM8785 @ 48khz Sampling

Figure 5 - TI PCM4202 @ 192khz Sampling

"Janus – a Sound Card designed for Software Defined Radios" Phil Harman, VK6APH and Bill Tracey, KD5TFD, from TAPR.

Amplitude and Phase match

- For SDR the image occupies half the spectrum (positive & negative frequencies are images).
- To achieve acceptable image rejection, left and right channels must be well-matched in amplitude and phase response.
- Amplitude matching better than ±0.005 dB and phase matching better than ±0.03 degrees is need for ~70 dB image rejection.
- Typical soundcards are not this good across entire passband.

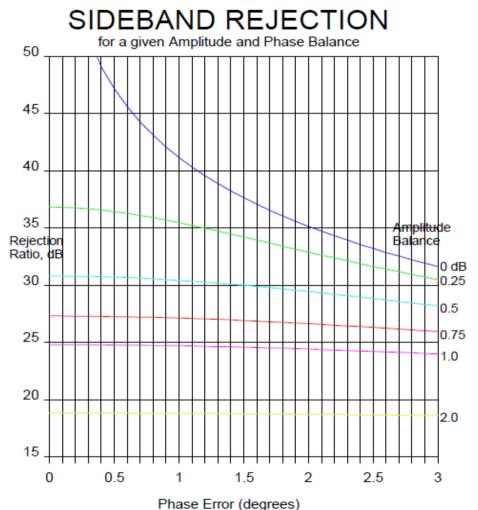


Figure from Merrimac Industries application note: "COMPLEX MODULATORS and DEMODULATORS (I & Q NETWORKS) 10 to 8,000 MHz GENERAL INFORMATION"

Some soundcard SDR results

(from LP-PAN test results¹)

	Noise Floor: Display Center	Noise Floor: Display Edges	Broadband Image Rejection	CPU Usage (Note 2) [A = best]	Application Sharing [A = best]	Cost New
192 kHz						
Creative Labs E-MU 0202 USB	-130dBm	-126dBm	55 - 80dB	С	В	\$100
Creative Labs (Note 4) E- MU 1212m PCI	-138dBm	-138dBm	45 - 60dB	В	Α	\$140
Roland Edirol FA-66 Firewire *	-129dBm	(Note 3)	45 - 70dB	В	В	\$280
Infrasonic Quartet PCI	-133dBm	-125dBm	50 - 70dB	В	Α	\$140
96 kHz						
M-Audio Firewire Audiophile	-131dBm	-131dBm	55 - 75dB	Α	Α	\$80 Used
M-Audio Delta44 PCI *	-129dBm	-129dBm	50 - 70dB	A	A	\$150
M-Audio Audiophile 2496 PCI	-131dBm	-131dBm	55 - 70dB	Α	Α	\$90
SoundBlaster Audigy 2 ZS Notebook PCMCIA (Note 8)	-129dBm	-129dBm	55 - 70dB	Α	?	\$50-100 Used

¹Larry Phipps, N8LP. See: <u>http://www.telepostinc.com/soundcards.html</u> for complete notes.

Resources

- Audacity is available (free) from Sourceforge.net: <u>http://audacity.sourceforge.net/download/</u>
- Links to many digital communication software packages: <u>http://www.ac6v.com/software.htm#DIGITAL</u>
- CWGet decoder: http://www.dxsoft.com/micwget.htm
- MMTTY RTTY program: <u>http://mmhamsoft.amateur-</u> radio.ca/mmtty/
- Audio clips of digital modes, links to some software: http://www.wb8nut.com/digital.html
- Spectran V2 spectrum analyzer software: http://www.sdrham.com/spectran.html
- LP-PAN SDR based panadaptor: http://www.telepostinc.com/