
 QEX – May/June 2011 1

Tom McDermott, N5EG

3950 Southview Ter, Medford, OR 97504; n5eg@tapr.org

A Flexible 2-Port Network
Calculator Tool

1Notes appear on page 00.

Computer program analyzes complex circuits using
lab measurements of component networks.

Circuit simulation (such as SPICE) is used extensively in the
design and optimization of analog circuits. For the large majority of
circuit analysis problems it’s an effective technique. However there
are a few common RF analysis problems that are not easily addressed
with circuit simulation. Another general technique of analysis has
been developed based on 2-port networks. A 2-port is a network
with two ports – input and output, each of which is usually ground-
referenced. Commonly the 2-port will be drawn with two input con-
nections (port + ground) and 2 output connections (port + ground).
These 2-ports are commonly used for microwave circuit analysis, but
the actual techniques are easily applied as well to HF and VHF/UHF
RF networks commonly used by amateurs.

A modern Vector Network analyzer (VNA) can measure net-
works and extract the measured results represented as a 2-port
network. Most commonly these are the S-parameters of a network,
but it is also possible to extract the network transfer function as
Z-parameters, Y-parameters and others. The VNA can measure the
network response over a range of frequencies, and the response of
the network is usually a set of the 4 parameters at each discrete mea-
surement frequency. It is sometimes difficult to replace the measured
response of the network with a simple circuit model that matches the
response well over the measured frequency range. Instead the table of
measured parameter values is many times the only practical descrip-
tion for the network.

Circuit simulators such as SPICE are difficult to use when we
have empirical measured data tables that are frequency-dependent;
in that case performing 2-port network computations may be easier
and more indicative of the actual network values.

We sometimes know of stray circuit elements that are unavoid-
ably present between our test equipment and the networks we are
trying to measure. In this case it may be possible to subtract out the
influence of the corrupting stray circuits mathematically, and this is
especially so if the stray can be simply described (that is, it’s not too
complicated, and it does not bridge the network under test). While
it is impossible to construct a physical network 2-port with negative
component values, mathematically it’s easy and actually fairly intui-
tive. Of course any such fictional compensation networks need to
resemble as closely as possible the actual stray values in the circuit
(except the sign), otherwise they will incorrectly compensate for the
stray. If not, the compensation might be correct at one frequency but
wrong at other frequencies. Interestingly, we can also use a model of

a transmission line with negative length to provide compensation of
both cable loss and phase delay.

On occasion we are able the measure the total response of a net-
work, but we only know the values for some of the 2-ports that make
up the network. It is possible to derive the response of the unknown
2-port block (or of the collection of unknown blocks assuming they
are contiguous) by subtracting the known blocks from the overall
measurement to leave just the unknown block.

These types of circuit analysis are difficult to do in circuit simula-
tors such as SPICE, which may not converge well, may not handle
negative component values well (or at all), are awkward to use with
tabular parameter data, or don’t compute the response of an unknown
element easily.

Finally, we may want to specify a set of boundary conditions on
2-port networks (for example, the ratio and phase of drive currents
to Z-parameter network). While this can be done in SPICE using a
number of current sources, it is still difficult to closely model these
conditions when the network itself is frequency-dependent (thus
affecting the network port drive impedances) in a way that is mod-
eled by simple circuit elements. In this case, 2-port analysis provides
us some quite useful results. This case is particularly important when
trying to model phased antenna arrays where there is a considerable
amount of mutual impedance between the elements, and that mutual
impedance changes with frequency.

Thus 2-port analysis can be a useful tool in a toolkit along with
circuit simulation and other computation tools (such as a spread-
sheet). This article will focus on 2-port modeling, and a flexible soft-
ware tool written in Microsoft C# to make it fast, easy, and intuitive
to do; then illustrate with three examples.

Definition of common 2-port Networks
Two-port networks have been described and used for many

years. Some references that are or may still be available are Pozar1,
Matthaei, Young, Jones2, and Gehrke3. The most commonly used
2-port networks are the S, Z, and Y networks, and the ABCD matrix
representation. Each 2-port has a different set of port termination
conditions used for defining and measuring each parameter. Each
type can be mathematically converted to any of the other forms, but

2 QEX – May/June 2011

the ABCD matrix turns out to be very easy to use computationally.
In the included C# tool, each kind of 2-port network Tile (an object
that the software uses to represent a single 2-port network) can have
its ABCD matrix extracted. That extracted ABCD matrix is what is
used for all calculations.

A 2-port impedance (Z) matrix relates the voltages measured at
the ports of a 2-port network in response to the currents injected at the
ports. Mathematically, we can describe the resultant voltages at ports
1 and 2 to the currents injected at ports 1 and 2 as:

1 11 1 12 2

2 21 1 22 2

V Z I Z I

V Z I Z I

= +

= +

Or, using matrix notation:

1 11 12 1

2 21 22 2

V Z Z I

V Z Z I

     
= ∗     

     

 or	 [] [] []V Z I= ∗

We measure each term in the Z matrix by first injecting a current
into port 1 and open-circuiting port 2 (zero current), then measuring
the voltage at port 1 (V1/I1 = Z11) and port 2 (V2/I1 = Z12). Then we
reverse the network, injecting current at port 2 and open-circuiting
port 1, and measure the voltage at port 1 (V1/I2 = Z21) and at port 2
(V2/I2 = Z22). With phased antenna arrays we many times are con-
cerned with the element currents so an impedance matrix describing
the antenna array is commonly encountered and measured using this
method, or other methods. Similarly, the admittance matrix relates
the resultant currents at each port to the voltages injected at the other
ports:

[] [] []I Y V= ∗

S-parameters are defined when all ports are terminated in a
matched impedance, for example 50 W. The S-parameters relate the
resultant voltage reflected (V–) out a port compared to the voltage
injected (V+) into the various ports.

1 11 12 1

2 21 22 2

V S S V

V S S V
− +

− +

     
= ∗     

     

ABCD Matrix description
An ABCD matrix describes the input voltage and current in

terms of the output voltage and current of a 2-port network. This is
backwards of the way that we normally think about circuit analysis
— where we start at a generator and work our way towards the load.
In analyzing ABCD matrices, we start at the load, and work our way
towards the generator, asking essentially the question: “what volt-
age and current need to be supplied by the generator at the input to
a 2-port network in order to cause a known voltage and current at
the output of the 2-port network?” The terminology ABCD matrix
is derived from the arbitrarily-chosen names of the 4 coefficients in
the matrix. The two equations that describe the input node (V1, I1)
in terms of the output node (V2, I2) are:

1 2 2

1 2 2

V A V B I

I C V D I

= ∗ + ∗

= ∗ + ∗

Where all the variables are complex numbers. It’s convenient to
represent this in matrix form as:

1 2

1 2

V VA B

I IC D

    
= ∗    
    

In the software tool the {V, I} pair representing a node is called
a NodeSet, and the matrix holding the parameters of a two-port is a
ParameterSet. The ParameterSet contains the 4 complex numbers of

the ABCD representation of a Tile, at one single specific frequency.
Then NodeSet(in) = ParameterSet * NodeSet(out). By using a matrix
and vector to hold the values, and by defining a multiply operator,
this reduces the description of the computation in the source code to
a single multiply operation – just like the expression above because
the software has defined matrix and complex operations for the
ParameterSet and Complex object types.

An example derivation of a simple component network shows
how to describe a 2-port via an ABCD matrix. Assume that the net-
work is a simple series impedance between port 1 and port 2, with no
impedance to ground. The voltages and currents are shown in Figure
1. The definition of direction of the currents shown in this figure
allows direct chaining of the computations. The output current must
be the same as the input current, and the input voltage must be equal
to the output voltage plus the I*Z drop across the series impedance.

By inspection, the term ‘C’ must be zero and ‘D’ must be one so
that the input and output currents are the same. The term ‘A’ must be
one and the term ‘B’ must be equal to the series impedance Z. This
yields the input node pair values as:

1 2 2

1 2 2

V 1 V Z I

I 0 V 1 I

= ∗ + ∗

= ∗ + ∗ 	 which simplifies to 	
1 2 2

1 2

V V Z I

I I

= + ∗

= 	

So the ABCD matrix for a series impedance is:

1 Z

0 1

 
 
 

Z can be composed of a combination of series or parallel com-
ponents (resistors, inductors, and capacitors), or it could be the
impedance presented by a transmission line. Thus Z generally is
frequency-dependent, and we need to run the network chaining com-
putation at each frequency of interest.

For a shunt network, the voltage on the input and output terminals
are the same, but the input current is the sum of the shunt current and
the current out of the network. Letting Z be the shunt impedance,
then Y is the shunt admittance, equal to 1/Z. This yields the input
node pair values as:

	 which simplifies to	
1 2

1 2 2

V V

I Y * V I

=

= + 	
 	

So the ABCD matrix for a shunt impedance is:

1 0

Y 1

 
 
 

Using an ABCD Matrix
Essentially, the ABCD matrix tells us that if we know the output

NodeState (the voltage and current at the output of the tile), we can
derive what the voltage and current at the input of the tile would
have to be in order for that known tile output voltage and current to
be what they are. By computing and storing the node state at each
node, we can quickly select the display of impedance, return loss, or
other node parameters at any node, and similarly we can compute the
voltage or power transfer between any pair of nodes by walking the
computation from the output of the last tile to the input of the first tile.

The various types of 2-port networks can be converted back and
forth between forms. From a computational perspective, it’s easy to
use the ABCD format for chaining the calculations across multiple
2-port devices. While it is possible to chain other format calculations
(such as using the chaining rules for S-parameters) the computation
is straightforward when using an ABCD matrix.

When using ABCD matrices, the total network response is simply

()
1 2 2

1 2 2

V 1 V 0 I

I 1 / Z V 1 I

= ∗ + ∗

= ∗ + ∗

 QEX – May/June 2011 3

the cascade of the various 2-port networks, achieved by progressive
matrix multiplication of all the 2-port networks starting at the last
2-port. For the C# tool described in this article, the approach chosen
was to save the computations for all of the nodes in the network. The
{ voltage, current } pair are computed at each node and saved, and
the input nodestate of the previous computation becomes the output
nodestate of the next. This is accomplished by matrix multiplication
of the network ABCD matrix times the output node voltage, current,
resulting in the input node voltage, current, and then iterating to the
front of the network (saving all the node pairs along the way).

The software defines an object known as a ParameterSet which
contains the frequency of the dataset, and the 4 complex parameters
of a tile at that one frequency. The ABCD parameters are extracted
from the Tile depending on what kind of 2-port network the set is
describing. The tile can optionally contain a collection (in a list)
of ParameterSets, one per frequency, or it can be described at just
one frequency if the tile is easily described analytically and the
frequency-dependent behavior can be easily computed (such as a
resistor, capacitor, inductor, or combinations of them). Additionally
a NodeState object contains the complex voltage and currents at a
node.

The calculation computes a list of NodeStates, one for each node
in the network (a network has one more node than there are tiles).
The ParameterSet multiplication operator is defined so that a 2x2
matrix times a 2x1 vector (ABCD matrix times NodeState) or 2x2
matrix times a 2x2 matrix (ABCD matrix times ABCD matrix) mul-
tiplication is performed depending on the types of the objects being
multiplied. This makes the ABCD chaining calculations look simple
in the source code while in reality a significant quantity of matrix
multiplication and complex number computations are happening as
a result of that single multiply instruction.

Computing Network Response
To compute the network response (a cascade of tiles) we start at

the last tile in the network, and set the output voltage and current (the
nodestate after the last tile) to {V=1+j0, I=0+j0}. This means that
the output voltage is 1 volt at a phase angle of zero degrees, and the
output current is zero — essentially we terminate the last tile into an
open circuit. Then we work our way back towards the source (at node
zero) through all the tiles computing each node voltage and current
pair as we go, and saving them as a list of NodeStates. At any point,
the voltage transfer function is simply the last node voltage (1+j0)
divided by the node voltage at the present point. We can compute the
impedance at any node as V node / I node.

The power transfer can be different than the voltage transfer,
because the impedance at each point in the network can be differ-
ent. When dealing with complex voltages and currents, we need to
take into account the phase angle of each. The power delivered into
a load is:

()*1
P Re V I

2
= ∗

The real part of the product of the voltage V and the complex
conjugate of the current I is the power into the load. The factor of
one-half arises because V and I represent the peak voltages of a
sinusoidal wave since they are complex vectors. We can compare the
power at any point in the network to any other point — except the last
node. The last node (which is after the last tile) is an open circuit, and
no power can be delivered to an open circuit (because the current is
zero). The C# tool will signal an error if we try to compute the power
transfer from some node to the last node, since it is not possible to
deliver any power into that open circuit.

Terminating Tile
In fact, the last tile is somewhat special in the network analysis.

Many times we will make an S-parameter measurement of a com-
plicated load (such as an antenna). The resulting S-parameter matrix
including the antenna does not have a defined set of output terminals
(it’s really a one-port measurement), and thus no port-to-port transfer
function exists. S12, S21, and S22 are many times just set to zero in
the resulting measured S-parameter file by the VNA when a 1-port
measurement is made. We cannot derive an input voltage and cur-
rent that can cause the output voltage and current of 1+j0, 0 because
there’s nothing actually connecting port 2 to anything (we would
attempt to compute infinite voltage times zero transfer).

The software tool makes a special case for the last tile – the input
term S11 (or Z11 or Y11) is derived based on the output terminal
pair not being used, and uses these modified values in the extracted
ABCD parameters set rather than the normal 2-port extraction. This
turns the last tile into a simple one-port termination of the network
that is being analyzed, which is actually what we likely measured
with our test equipment anyway.

The pseudo-code for calculating the entire network response is
then:

Foreach (frequency)
{
 // open circuit after last tile
 Set NodeState(out) = {V=1+j0,I=0+j0}
 Foreach (tile, starting at the last tile
 and working forward)
 {
 //Calculate {Vin,Iin} from {Vout,Iout}
 // using the ABCD matrix
 // of the tile at the current
 // frequency
 NodeState(in) = ParameterSet(in ABCD form) *
 NodeState(out)
 Append NodeState(in) to the list
 of node values for that frequency
 Update the value of NodeState(out) =
 NodeState(in) and continue
 }
}

Deriving the Input Impedance
An important class of problems to analyze deals with determin-

ing the input impedance of a 2-port where there is mutual imped-
ance between the input and the output, and some driving condition
between the input and output is known. This occurs for example
in the case of a vertical antenna array where multiple elements are
driven with various known currents but at (possibly) different phase
angles. The relationships between the antenna can be described
as a Z-parameter matrix (likely frequency-dependent) where the
self-impedance of the elements (Z11, Z22, etc.) are known, and the
mutual impedance of the elements to one another (Z12, Z21, etc.)
have been previously measured. These mutual impedances change
the driving point impedance of each antenna depending on the exci-
tation magnitude and phase at the other antennas and thus affect the
performance of the array, it cannot be ignored.

To determine the input impedance of the 2-port in this case
requires setting a forcing condition on the Z-parameter network dur-
ing analysis. Normally we compute [V1,I1] based on the [V2,I2], but
in this case we may know both I2 and I1 magnitude and phase (or
their complex ratio), while not knowing V2 and V1. We must specify
I1 in relation to I2. Since we do not know I2 when we are describing

4 QEX – May/June 2011

the network, we specify I1/I2, as a ratio. This ratio must include the
amplitude of the currents driving the two antennas (the two ports) as
well as the phase relationship of the currents to one another (are we
driving the antennas in-phase, out-of-phase, phase-quadrature, or
something else).

Given the ratio, we have two unknowns and two equations, and
can thus compute the node voltages, and from that the network input
and output impedances. If we set I2 equal to 1+j0, then specifying a
condition that the ratio I1/I2 = –1 would tell us that the two elements
are driven in-phase but with the same current magnitude (recall the
negative sign in defining the current convention). Setting I1/I2 =
0–j1 for example would set the driving current magnitudes equal but
90 degrees out of phase. The C# program specifies the ratio in dB,
and phase angle in degrees to make the ratio entry more intuitive.
The program extracts at each frequency the ABCD matrix from the
Z-parameter matrix (or Y-parameter or S-parameter matrix).

First we derive V2 knowing both I1 and I2:

1 2
1 2 2 2

I DI
I CV DI thus V

C

−
= + =

Then we can compute V1 knowing both I2 and V2 using the
ABCD formula we already know:

1 2 2V AV BI= +

Now the analysis of the 2-port network can proceed normally
since we have computed the node conditions at node 1 and it can cas-
cade forward in the standard manner. In order to force some current at
I2, there must be a shunt network terminating the output of the tile. It
really does not matter too much what that shunt network is, because
the input current is defined as a ratio of the output current, and V2
will be computed as necessary to force the value of shunt current,
but it’s convenient to use a shunt resistor of large value. Additionally,
appending a shunt network after the Z-parameter network means that
it is not the last tile, and so the full set of 4 Z-parameters (or Y, or S)
will be used (which is what we want).

Transmission line
The response of a transmission line is described by several fun-

damental parameters: loss, velocity factor, and characteristic imped-
ance. The latter two properties can be used in an equation to describe
the input impedance of a transmission line that is terminated in an
arbitrary load impedance. Zo is the characteristic impedance of the
line, Zl is the load impedance, and beta is the phase delay charac-
teristic of the line per unit length. A simple cable approximation is:

L o
in o

o L

Z jZ tan(l)
Z Z

Z jZ tan(l)

+ β
=

+ β

However, this does not account for the loss of the transmission
line, just its phase. A more general formula that includes line loss can
be used if we are able to utilize complex arguments to hyperbolic trig
functions. A side benefit is that the resulting equation appears sim-
pler than the one above. In most of the classic math textbooks, the
complex variable z (not impedance) is defined as x + j y. Then the
trigonometric identities (in terms of x, y, and z) are:

sinh(z) sinh(x) cos(y) j cosh(x) sin(y)= ∗ + ∗

cosh(z) cosh(x) cos(y) j sinh(x) sin(y)= ∗ + ∗

sinh(z)
tanh(z)

cosh(z)
=

If we define a new constant gamma, γ = α + j β, which includes
both the loss (alpha) and phase delay (beta) properties per unit length,
then γ * l = α l + j β l represents the loss and phase delay for the entire
length of the cable. α*l is the loss of the line section, in Nepers;
β * l is the phase delay of the line section in radians. The general
transmission line input impedance equation including loss then
becomes:

L o
in o

o L

Z Z tanh(l)
Z Z

Z Z tanh(l)

+ γ
=

+ γ

Where Zin, Zl, and Zo are complex impedances, using the pre-
vious identities to compute the hyperbolic tangent functions. The
above formulation is usually called the low-loss cable approxima-
tion.

The COMPLEX number library included in the C# program pro-
vides regular and hyperbolic trig definitions for complex arguments,
which makes the source code much more readable. Visual Studio C#
2008 does not include complex numbers, so a COMPLEX module
was written to perform the common operations.

The Zin of the transmission line computed above is inserted into
the ABCD matrix. For a series transmission line, the resultant ABCD
matrix is:

1 Zin

0 1

 
 
 

Where Zin is the result of the previously derived load to the trans-
mission line Zl. Series and shunt stubs are modeled similarly to the
series transmission line, except that the termination impedance of the
stubs must be known as a circuit value (rather than being computed
as in the case of the load terminating a series transmission line). The
ABCD matrix for a series stub is the same as above, while the ABCD
matrix of the shunt stub is:

1 0

1 / Zin 1

 
 
 

	 also can be shown as 	
1 0

Yin 1

 
 
 

	

The program uses a simplified stub termination impedance con-
sisting of a resistor in series with an inductor and the series combi-
nation of those two in parallel with a capacitor. This matches pretty
well to the cases where a low value of termination resistance has
some series lead inductance, or when an open circuited line has some
fringing capacitance.

As with other RLC loads, setting C=0 means ‘no capacitance’.
The program traps out cases where setting a reactance to zero would
cause a divide-by-zero error, and instead removes that device from
the model.

The loss of a transmission line can be approximated above a few
hundred kilohertz from an equation that fits two coefficients to a
function of frequency, one directly proportional to frequency, and
the other proportional to the square-root of frequency. The program
provides a drop-down list of a few commonly used coaxial and twin-
conductor types of cables and pre-populates the characteristic imped-
ance (both real and imaginary parts), the loss coefficients, and the
velocity factor, you must supply the length of the cable. The values
used in this program come from VK1OD’s on-line transmission line
loss calculator4. The pre-populated values can be over-ridden with
other values of the parameters for a particular case, if known. The
characteristic impedance of many coaxial cables starts to change a
lot below one megahertz becoming increasingly more reactive, so the
above equations need to be used with appropriate caution.

 QEX – May/June 2011 5

Series and Parallel RLC Networks
Series and shunt impedances are pretty straightforward to model

as 2-port networks. A series impedance could be composed of a
series connection of RLC parts, or perhaps as a parallel connec-
tion of RLC parts. At each frequency we compute the complex
impedance of the collection of parts, and substitute that complex
impedance number into the series ABCD matrix. Similarly a shunt
impedance could be either series RLC, or parallel RLC. Again the
complex impedance at each frequency is computed and substituted
into the shunt ABCD matrix. These are the same matrix format as
shown above.

Many times we will only have one or two of the RLC elements,
and a common short-hand notation is to use a component value of
0 to signify that no component is present. Thus the calculator tool
needs to handle a few special cases of zero value and instead remove
that device from the circuit. For example, a value of 0 mH in a parallel
circuit would short out the circuit, when what we really mean is that
there is no inductor present (thus, the inductor has an infinite parallel
impedance rather than a zero parallel impedance).

Transformers
A perfect transformer is easily modeled just from the turns ratio,

but is not very useful since they don’t exist and the assumption of
perfect coupling is usually poor. Good transformer models can be
quite complex yet still have significant error compared to the actual
RF devices. A simple compromise model was selected that requires
describing the primary winding inductance, the turns ratio, and the
mutual coupling between the primary and secondary, but ignores
winding resistance, stray capacitance and other effects. The symbols
are defined as:

L1 = primary inductance
L2 = the secondary inductance
N = the turns ratio = Secondary turns / Primary turns
k = coupling coefficient
Traditionally it ranges from zero to plus one, but in this model

we allow it to range from –1 to +1. A negative value indicates that
the secondary winding is opposite in phase compared to the primary,
thus a value of negative 1 indicates perfect coupling between wind-
ings but the transformer inverts the polarity of the output compared
to the input. A value of +1 indicates the output winding has the same
polarity as the input and is perfectly coupled. A value of zero indi-
cates no coupling between the two windings at all. M is the mutual
inductance computed from the above parameters. Since the model
requires L1 to be defined, we compute the value of L2 (secondary
inductance as):

2
2 1L L N=

And the mutual inductance is computed as:

1 2 1M k L L kNL= =

This shows that M has the same algebraic sign as k.
We then translate the transformer model into a T network with 3

inductors having inductance values as shown in Figure 3. Note that
some of the inductors will have negative inductance values depend-
ing on the value of k. Then we compute the impedance of each
element at each frequency of interest. Z1 = impedance of (L1–M),
Z2 = impedance of (L2–M), and Z3 = the impedance of the mutual
inductor (M). The ABCD parameters are derived from those imped-
ances as:

1 1 2
1 2

3 3

2

3 3

Z Z Z
1 Z Z

Z Z
ABCD

Z1
1

Z Z

 + + + 
 =
 

+ 
 

Reading Data From a Measured Network
An important capability of the tool is to read in 2-port networks

that have been measured by external test equipment. An industry-
standard file format for 2-port networks is the Touchstone S2P for-
mat5. Most Vector Network analyzers (VNAs, and some other types
of equipment) are capable of exporting an S2P formatted file. This
tool is able to read an S2P file, decide what kind of 2-port network
format it represents, parse the file, and store the 2-port parameters as
a function of frequency in a data structure for that network tile. Each
network block independently stores its own retrieved data, as the
data for each network may have different formats, frequency ranges
or frequency step sizes.

Parameter Frequency Interpolation

Since the 2-port data are captured by the test equipment at spe-
cific discrete frequencies, and the 2-port analysis may occur at fre-
quencies that are not exactly aligned with the measured frequencies,
some means to interpolate the retrieved data is needed. Since a 2-port
parameter is in general a complex number, it is important to account
for the fact that the phase could wrap almost 360 degrees between
adjacent samples. The simplest way I have found to interpolate these
samples is to convert the parameters to real + imaginary format, and
then perform two one-dimensional linear interpolations in frequency
(one for the real component, and one for the imaginary component
of the parameter). This eliminates complications related to wrapping
of coordinates.

It’s possible to describe the output node in terms of the input node
(backwards from what we have been doing so far) by using matrix
inversion, although with the proviso that sometimes the ABCD
matrix cannot be inverted (sort of like trying to divide by zero). We
multiply both sides by the inverse matrix to work backwards.

1 1
1 2

1 2

V VA B A B A B

I IC D C D C D

− −        
∗ = ∗ ∗        

        
thus

1
1 2

1 2

V VA B

I IC D

−     
=    

     
since a matrix times its inverse is the unity matrix (similar to

multiplying by one).
The C# program defines an inversion operator for the

ParameterSet matrix because it turns out to be useful when trying to
remove a known ABCD matrix’s impact when we have an unknown
matrix. Additionally, an “IsSingular” test is implemented for the
matrix inversion. A matrix which is singular cannot be inverted, this
test allows us to abort a computation before error.

This has been left in as a hook if a capability to derive unknown
2-port network properties is added to the program in the future.

C# Program Implementation
The 2-port tool was written in Microsoft Visual Studio 2008 C#,

which supports the NET 3.5 runtime (which is needed by the chart
control). It has also been tested with Visual Studio 2010.

The Microsoft C# language starting with version 2.0 provides a
“generic” capability, similar to the C++ “template.” This allows the
use of data structures, such as List, that can apply to a wide range of

6 QEX – May/June 2011

data types. The List<Type T> data structure is very easy to use in
C#. The tiles, parameter sets, node sets, etc. are each contained in
lists, which do not have specific size constraints. There are ways to
search through and re-order lists, and to identify an element in a list
by index (position in the list) and to retrieve an index or a copy of the
list element itself.

The design element types are marked as “Serializable” in the
software. This allows a very simple implementation for streaming
(saving) the data out to disk and retrieving it back. However each
and every type that ultimately is sent to disk (even when embedded
within another type) must be serializable. For example the Complex
number type must be serializable in order to make a ParameterSet
(which contains 4 complex numbers) serializable.

Additionally, each data structure has “Properties” associated with
most of the internal object variables. By explicitly marking Property
meta-data in the source code, the structures are “browsable” by an
object browser control which accesses various Properties meta-data.
The object browser is a tool that can be added to a windows form to
permit run-time inspection and change of object variables. It’s a little
clunky to need to implement a property for each variable, but the ease
of testing and debugging with the object browser is usually a good
trade-off. In earlier editions of Visual Studio, the object browser tool
needs to be loaded into the toolkit, as it is not installed by default.
The toolkit is used only when compiling programs. When running
the executable part of the program the browser tool is embedded
within the EXE.

Required Runtime Packages
To run the software, the .NET 3.5 SP1 framework needs to be

downloaded and installed. The NET 3.5 SP1 framework is a free
download.6

 Microsoft released a free very flexible chart control for .Net
applications [MS Chart]7. The chart control also needs to be down-
loaded from the Microsoft Web site and includes examples, help,
etc. The control comes in two pieces: the runtime package, and the
Visual Studio designer integration package. Only the runtime portion
is needed to run the software.

Required Compiler Packages
A free version of C# 2008 (Express Edition) is available from

Microsoft. There is a newer version available, C# 2010 Express, and
the package has been compiled and tested under both versions8. The
code in this tool was developed using the 2008 professional version.
The free version does not support building an MSI installer pack-
age, but this 2-port tool does not interact with device drivers or the
underlying Windows API’s and does not have any specific installa-
tion requirements – thus an installer does not need to be built. The
free Express Edition tool is all that’s needed to change, compile, and
experiment with the source code. One limitation of Visual Studio
2008 compared to predecessor versions is that it no longer produces
EXE files that work with Windows 98, ME, NT, or 2000. The com-
piled code only works with Windows XP, Vista, and Windows 7.

C# 2008 Express does not support the integration of the MSChart
control within the Visual Studio designer (thus allowing placing the
control on a form, changing the size, etc.) but it will compile the code
provided with this article since the control is already embedded in the
designer resource. Thus you can change the code, but cannot interact
with the control very much via the designer. If you have Visual Studio
2008 (not the free 2008 C# Express Edition), then you can also
download the MSChart designer integration package which allows
you to make all design-time changes on the chart control.

The express edition does not install the Visual Basic Power
Packs 2.0 (Visual Studio 2005 version) by default. You will need to

install version 2.0 of the control9 so that the Microsoft.VisualBasic.
PowerPacks.VS namespace reference can be found. Different ver-
sions of C# may or may not link properly to this reference. If it can-
not resolve the reference (compile errors, and an error exclamation
mark in the references folder of the solution explorer), first delete the
reference, then add it back in again which will prompt you to provide
a link to the proper location on disk.

.
Using the Program

The Design tab of the program is where designs are entered.
Initially the program brings up a grid of 24 slots. The slots are in
series, from upper left to lower right, across each row left-to-right
then down to the next row. The last (right-most) tile on the first row is
just before the first (left-most) tile on the second row. Right-clicking
the mouse allows inserting or deleting tiles. The first tile can be
inserted using either Insert Right or Insert Left, and it will be inserted
between nodes 0 and 1. The insert operation brings up a menu that
allows selection of the type of tile (2-port) that is to be placed. Tiles
that have been placed on the design tab can be selected by clicking
the mouse over the desired tile, and that tile will be highlighted. The
selected tile can be deleted by right-clicking the mouse. The selected
tile can be browsed in the tile browser tab, and its parameter type, and
component values can be quickly changed. Once a tile is selected, a
new tile can be inserted to the left of or to the right of the currently
selected tile. If a new tile is inserted when no tile is selected, it will
be inserted at the first possible position (between nodes 0 and 1) and
all the rest of the tiles will get bumped to the right. The node numbers
are shown on the background of the design tile to make it easier to
identify and remember node numbers when specifying them on the
analysis tab.

The tile selection menu allows direct input of the parameters,
selection of a forcing current ratio (for Z-parameter antenna matrices
usually), and whether a 4-parameter set for a (S, Y, Z, or ABCD) tile
is fixed in frequency, or is frequency-dependent. If it is frequency
dependent, a menu pops up allowing the selection of an S2P file to
load it from. A design can be saved to a file, the design cleared, and
a design retrieved from a file. When saving a design, the entire state
of the design tiles are saved, including all the frequency-dependent
parameters (they lose their association to the original S2P file but all
the data are saved). A List data structure holds the frequency-depen-
dent list of parameters values, so the program does not set arbitrary
limits on the number of frequency points that any tile can hold until
the program runs out of memory or disk space. Designs with over a
thousand frequency points have been tested (and it results in a several
hundred KB file).

One limitation is that the frequency points must be in the original
S2P file in increasing frequency order, but I’ve not yet found any S2P
files that violate this ordering. The actual frequency of each analysis
point does not need to line up with the frequencies read in from the
S2P file, nor do different tiles need to align in frequency with any
other tiles. The software searches each tile and finds the bracketing
set of frequency parameters, then does a linear-in-frequency inter-
polation between them to the actual analysis frequency. This works
well except in the case where the parameter values have a large
deviation from a linear approximation between the two frequency
points. In that case, the S2P file that the parameters were read in
from needs higher measurement resolution and more points or a nar-
rower frequency sweep to minimize the difference between adjacent
measured samples.

The analysis parameters page allows editing the analysis param-
eters (start and stop frequency, selected displays, number of analysis
points, etc.) in an object-browseable format, it duplicates much of the
functionality of the controls on the chart tab.

The MSChart control is used in the C# program to display the

 QEX – May/June 2011 7

results of the analysis over frequency on the analysis tab. The chart
does not have a polar-mode that can work as a Smith chart, so it’s
only used to display the parameters in rectangular format. The
zoom, pan, and other modes of the chart are active so you can drag
the mouse to zoom into the chart, or push the zoom-reset button on
each axis to go back to the full chart. It’s faster to do than to explain.

The Analysis Tab of the program brings up the chart control and a
few buttons and check boxes to enable displaying the impedance (in
several formats) at a selected node, and the voltage and power trans-
fer functions between a pair of nodes. The analysis button will turn
pink when the analysis results in some type of error (such as trying
to measure the power into the last node after the last tile). The values
are clipped to –308 dB when a zero-value is converted to dB to avoid
a run-time exception with the chart. If any values display as –308
dB, then it probably represents a value of minus infinity. There’s a
control or two to set auto scale or manual scale and max/min values
for the Y-axis (except phase, which has a fixed axis of –180 to +180
degrees), and to select linear or logarithmic frequency axis.

The Tile Browser allows changing the values of the selected tile
(the one with a black box around it). This is very convenient for
changing tile values, types, or drive conditions quickly.

Source Code
The complete C# source code tree with all designer resources, the

compiled executable file, and the examples have been placed on the
ARRL QEX Web site10. If you just want to run the program, simply
download the ABCDmatrix EXE file, unzip it, and execute it. You
should install the CHM (help) file into the same folder as the execut-
able program.

The source can be edited, compiled, and built in the Visual C#
Express 2008 integrated design environment (IDE). Make sure to
check that all references are present, and resolve any that are miss-
ing (such as the visual Basic Powerpack, the MSChart control, etc.).

Menus & Operation
The program has a pretty simple interface. Select the Network

Design Tab, and Right-click to bring up a context menu. When
there are no tiles on the design surface, or no tile has been selected,
either InsertRight or InsertLeft will insert a new tile at the first loca-
tion (between nodes 0 and 1) and bring up a menu to specify it. The
menu allows fixed values or frequency-variable values read from a
file (for S-, Z, and Y- parameters). Left-click a tile to select it. The
selected tile can be edited on the Tile Browser tab. The selected tile
can be deleted, copied to the clipboard, or cut (and copied to the clip-
board). InsertRight and PasteRight will insert a tile after the selected
tile. InsertLeft and PasteLeft will insert a tile before the selected tile.
Delete will remove a tile without copying it to the clipboard, cut does
copy it to the clipboard.

The Analysis Parameters tab allows changing the analysis param-
eters, but largely duplicates the checkboxes and numeric windows on
the analysis tab. The Analysis tab displays the results of an analysis.
The ‘from’ box selects the node where impedance (or S11) is dis-
played, and is the starting point for a Power transfer or Voltage trans-
fer analysis. The ‘to’ box is the terminating node for voltage or power
transfer. Note the power transfer can not be computed at the output of
the last tile because no power can be delivered to an open circuit. The
tab will catch and correct errors in the values of the ‘to’ and ‘from’
tab (except for power analysis) and will try to select the whole design
when blank or out-of-range values are selected. The Analyze button
will update the display. It will turn pink if a gross analysis error is
present (for example trying to display the power into an open circuit).

A design can be saved to and retrieved from disk, it uses the suffix
‘til’ (for ‘tile’). ‘New’ erases all the tiles on-screen and the clipboard.

Note that you can use the mouse to drag/select an area of the chart
and the view will zoom into that rectangular area. Slider controls
allow scrolling horizontally or vertically, and buttons allow reverting
back to un-zoomed axis.

Examples
Here are three examples and solutions worked out using the tool.

The examples have been chosen to illustrate some common func-
tions of the software tool, especially where one or two of the uses
might otherwise be a bit confusing.

.
Example 1 – shunt and series coaxial stubs.

The first example is a 50 W series source feeding a shunt stub,
then a series stub, then a 50 W shunt load resistor. Figure 4 is a screen

Figure 1 – Series
Impedance

2-port.

Figure 2 – Shunt
Impedance 2-port.

Figure 3 – 2-port
model of a

transformer with
mutual inductance.

Figure 4 – Network Design tab shown the circuit of example 1, with
the shunt stub selected.

8 QEX – May/June 2011

shot of the Network Design Tab. As each tile is inserted, a pop-up
menu allows selecting the type of tile, and the parameters of that tile.
Later on, an existing tile on the Network Design tab can be copied,
which copies all its parameters, or an existing tile can be selected and
then edited on the tile browser tab. The first element has a series RLC
of 50 W + 0 mH + 0 pF. The 0 pF means “no capacitor”, so the first
series element is 50+j0. The shunt stub has a termination R=0.2 W,
L= 0.02 mH, and C = 1 pF. It’s made from RG-58, and has a length
of 10 meters. The velocity factor, characteristic impedance and
loss parameters are filled in automatically when selecting the RG-58
cable type. The series stub is also 10 meters of RG-58, but has
R=1 MW, L=0 mH (is open-circuited instead of shorted), and has 1
pF of capacitance. The shunt load is series RLC of 50+j0. The shunt
stub is selected.

Figure 5 shows the Tile browser tab. Since the shunt-stub is
selected, it’s what is being browsed by the tile browser. All of the tile
parameters can be changed using the tile browser. The Cable length
field is highlighted, and the stub is 10 meters long. Figure 6 shows
the Rect Chart tab — the analysis results in rectangular chart format.
The voltage transfer from node 0 to node 4 is shown, magnitude in
dB, and the phase in degrees. We can see that the series and shunt
stubs, although both of exactly the same length, aren’t exactly on
the same frequency due to slight differences in their stray termina-
tion impedances. Also, the insertion loss increases slightly with fre-

quency (more readily seen using the power transfer from node 0 to
node 3 (not 4 as the transfer to node 3 is the power transfer into the
50 ohm shunt load).

Figure 7 shows the input impedance at node 0, in real ohms,
imaginary ohms format. If you change the series source resistor from
50 ohms to 0 ohms, a much different transfer function results. Y-auto

Figure 5 – Example of data input on the Tile Browser Tab for the
selected shunt stub of Figure 4.

Figure 6 – Example of data input and output on the Rect Chart Tab
showing magnitude and phase.

Figure 7 – Example of data input and output on the Rect Chart Tab
showing real and imaginary impedance at Node 0.

Figure 8 – Example of data input on the Analysis Parameters Tab.

Figure 9 – The Network Analysis Tab showing S parameter input
for a Tile.

 QEX – May/June 2011 9

scale is selected, analysis range is zero to 30 MHz.
Figure 8 shows the Analysis Parameters tab. Normally most anal-

ysis parameters can be selected from the ‘Rect Chart’ tab. Sometimes
however the defaults may not be what are desired. This tab allows
changing for example the Reference resistance for S11 analysis (the
default is 50 W), or the number of points in the analysis (this example
uses 400 points), as well as other parameters.

Example 2 - Subtracting networks
This next example shows how to mathematically remove known

text fixture strays from a measured network response. The solution
is hypothetical since the compensation consists of networks that in
fact cannot be realized. However, its purpose is to let us discover the
underlying network properties.

Figure 9 shows an S-parameter tile, which is loaded from data
measured by a VNA of a termination load through some RG-58
coaxial cable. Figure 10 shows the S11 analysis at node 0, which is
exactly the same as what’s displayed on the network analyzer (as it
should be). The number of points and the start/stop analysis range
have been set to the same as the VNA measurement. Figure 11 shows
the addition of a coaxial line segment in front of the measured result.
The length of the coaxial cable is set to negative 1.04 meters, and the
characteristic impedance is set to 50.75 – j0.4 W. This approximately
subtracts out the effect of the cable feeding the termination load (but
ignores some other error sources), letting us see that the load imped-

ance is roughly 50.5 W (with some uncompensated error).
Figure 12 shows the added cable compensation parameters. This

allows experimenting with a wide range of parameters values for the
selected tile’s values. Figure 13 shows the compensated S11 mea-
surement. Figure 14 shows a close-up of the resultant real part of
the load impedance.

Figure 10 – Display of S11 for Tile in Figure 9.

Figure 11 – Display of Network Design with a compensating
transmission line added to the S parameter Tile.

Figure 12 – The compensating transmission Line data shown in the
Tile Browser.

Figure 13 – The resulting S11 data after the compensating
transmission line is added.

Figure 14 – A zoomed version showing the real part of the
compensated S11 value.

10 QEX – May/June 2011

You can experiment with the parameter values on the ‘Tile
browser’ tab with the cable compensation tile selected, and look
almost instantly at the impact to S11, Zin, etc. on the Rect chart tab.
Of course just a negative-length cable can’t compensate for some of
the other measurement errors.

Example 3 – Phased vertical antenna
This example demonstrates the changing input impedance when

trying to feed a two-element phased vertical array under varying
conditions. It illustrates the impact of mutual coupling on the feed
network design for the verticals. Due to the lack of available mea-
sured data, a 2-element quarter-wave vertical antenna array (each
with 16 radials) over average ground was modeled in NEC2. The
self (Z11) and mutual (Z12) impedances over a range of frequencies
were derived, and an S2P then file created containing Z11, Z12, Z21,
and Z22 for the two element array at each frequency. Because this
is a theoretical model, symmetry was assumed, thus Z12=Z21 and
Z11=Z22 which would not happen in a real network due to slight
differences between the two elements.

We can then compute the input impedance of one of the antenna
elements for a variety of feed conditions at the other element, and
graph the various results. We need to place a dummy terminating
resistor at the output of the array, typically a shunt element of large

resistance when using a current-forcing condition for the output of
the Z-parameter network — otherwise we would be attempting to
force current into an open circuit (and thus creating infinite voltage)
and the analysis indicates an error due to an attempted divide by
zero; attempting to force zero current into an infinite impedance still
results in the same error. It’s easiest to just place a high-value shunt
load at the output of the Z-parameter network as all practical drive
conditions can be modeled without needing to change the topology.

The file “Monopole_z.s2p” contains the Z-parameter data for the
modeled two-element array from 3.5 to 4.0 MHz in 50 kHz steps.
We load it into the tools by selecting the “INSERT” Block Type Z,
Frequency Table for Matrix Elements selections from the tile input
form. Then we tell the tool which s2p file to read, and all the data
points from that Z-parameter network are inserted.

Figure 15 shows the network connectivity for Example 3. In
order to measure the input impedance of one antenna element with
essentially zero coupling to the second element, the current forcing
of the Z-parameter network is set to FALSE. Then the high value of
the shunt network assures that virtually no current flows out of the
network. This means that we will measure just Z11 of the network.
Figure 16 shows the resultant self impedance of one of the antenna
elements.

The resistance varies from just over 30 W (at 3.5 MHz) to
just under 50 W (at 4.0 MHz) and the reactance varies from about

Figure 15 – The Network Design for Example 3.

Figure 16 – The resultant self impedance of one of the antenna
elements in Example 3.

Figure 17 – The resultant input impedance of one antenna element
when the two elements are fed in-phase with equal current.

Figure 18 – The resultant input impedance when the two elements
are fed 90-degrees to each other.

 QEX – May/June 2011 11

–25 W to +15 ohms, with resonance near 3.8 MHz. If we now set
the current forcing function to TRUE, and set IMAG current ratio
= 0 and the REAL forcing current ratio to -1 we are feeding the two
elements IN-PHASE (the negative sign is because the two port cur-
rents are defined with opposite signs to allow chaining the calcula-
tions, recall Figure 1 above). The input impedance to the first element
changes dramatically as a result.

Figure 17 shows the resultant input impedance of one antenna ele-
ment when the two elements are fed in-phase with equal current. The
input resistance now varies from 50 to 70 W, and the reactance from
–45 to –10 W, and the element does not have a resonance between
3.5 and 4.0 MHz. If we feed the two elements with a 90-degree phase
(forcing IMAG = –1, REAL = 0) the input impedance drops a lot.
Changing the sign of Forcing_IMAG alters which element is fed in
leading phase to the other, and the impedance similarly changes a lot.

Figure 18 shows the resultant input impedance when the two
elements are fed 90-degrees to each other. In this case the input
resistance of the fed element is around 15 W across the entire
frequency range. If we change which element is leading in phase
compared to the other, the impedances again change.

Figure 19 shows the resultant input impedance when the two
elements are fed with the opposite –90-degrees phase relationship.
Here the apparent resonant frequency of the fed element appears to
be about 3.6 MHz, and the resistance varies from about 50 to 70 W.

The point of this exercise is to show that the feed networks for a
phased vertical array must contend with quite different feed-point
impedances as the phasing conditions of the array are altered. With
these conditions now quantifiable, we can insert our desired phas-
ing and impedance matching networks in front (to the left) of the
Z-parameter network of example 3 and model whether it accom-
plishes delivering the desired current into element one of the array
in the proper phase, and presents a proper load impedance to the
transmitter, all over the desired frequency range.

For Further Work
This tool has already proven to provide extremely quick feedback

for passive circuit and network ideas, sometimes much faster than
trying to set up a model in the normal circuit simulator tools and
providing the appropriate control statements. Rapid change of 2-port
values via the tile browser allows quickly iterating through a number
of design alternatives.

Further work could be done to extend this tool. Some possibili-
ties are:

1.	 Provide a Smith Chart view of the input return loss, S11.
While it is straight-forward to convert S11 to a reflection
vector X and jY components, the Microsoft chart control
does not readily allow the addition of the corresponding
appropriate background axis for the polar chart.

2.	 Provide the ability to extend the Z-parameter matrix
from 2-ports to a larger number of ports (such as 4-ports)
that would allow the entry of mutual impedance and self
impedance data for antenna arrays with more than 2 ele-
ments.

3.	 If the response of an entire network has been measured, but
one (and only one) of the elements of the cascade of 2-port
networks is unknown, it is possible to compute what the
response of that unknown network must be.\

Figure 19 – The resultant input impedance when the two elements
are fed with the opposite -90-degrees phase relationship.

Tom has been a licensed amateur for 40 years, and is a life mem-
ber of the ARRL. He enjoys HF, SSB and RTTY operation, various
technical topics in amateur radio mainly involving computers. He has
a Bachelor’s degree in Electrical Engineering from the University of
California, Berkeley. His professional background is in high speed fiber
optic transmission and switching equipment. Tom holds 12 patents and
is a member of the IEEE and Internet2.

Notes
1Microwave Engineering, Third Edition. David M. Pozar, 2005 John

Wiley & Sons, ISBN 978-0-471-44878-5.
2Microwave Filters, Impedance-matching Networks, and Coupling

Structures, Matthaei, Young, and Jones, 1980, Artech House Books,
ISBN 0-89006-099-1, Sections 2.06 through 2.13.

3Vertical Phased Arrays: Part 5, Forrest Gehrke, K2BT, Ham Radio
Magazine, December 1983, pp 59-64.

4VK1OD transmission line loss calculator is located at: vk1od.net/
calc/tl/tllc.php The k1 and k2 (frequency-dependent loss param-
eters) for a few cable types were extracted from this tool.

5Touchstone® File Format Specification Rev 1.1, Copyright © 2002 by
the EIA/IBIS Open Forum. Available from www.vhdl.org/pub/ibis/
connector/touchstone_spec11.pdf

6The Microsoft NET 3.5 SP1 Framework can be downloaded (as
of September 2010) from: www.microsoft.com/downloads/
details.aspx?FamilyID=AB99342F-5D1A-413D-8319-
81DA479AB0D7&displaylang=en

7The Microsoft Chart Controls for .NET Framework 3.5 can be
downloaded (as of September 2010) from: www.microsoft.com/
downloads/details.aspx?FamilyId=130F7986-BF49-4FE5-9CA8-
910AE6EA442C&displaylang=en

8Microsoft C# 2008 Express Edition can be downloaded (as of
September 2010) from: www.microsoft.com/express/downloads/

9The Microsoft Visual Basic 2005 Power Packs 2.0 can be down-
loaded (as of September 2010) from:

www.microsoft.com/downloads/details.aspx?FamilyID=92faa81e-
e9c1-432c-8c29-813493a04ecd&displaylang=en

10All files have been placed on the ARRL Web site at: /www.arrl.
org/qexfiles. The file set contains the tool executable (EXE file),
a help file, the tool source code (released under the GPL license),
the three example design files, and the s2p files for the examples. It
does not contain the Net frameworks or chart tools from Microsoft.

