High Frequency Propagation (and a little about NVIS)

Tom McDermott, N5EG August 18, 2010 September 2, 2010

Updated: February 7, 2013

0

The problem

- Radio waves, like light waves, travel in ~straight lines.
- How do we communicate with someone far away – hidden by the curvature of the earth?
- Use satelites, repeaters, base stations and fiber optics – 'cell phones, VoIP, etc.'
- What happens when the power goes out, the towers are damaged, the base stations are down, or we're out of range?
- How do we communicate when there's no infrastructure?

A Solution

- The earth's ionosphere acts as a radio wave reflector
 - It's high above the ground.
- The ground itself can reflect radio waves.
- Between those two we can communicate around the world.
 - With some restrictions.
 - Frequencies from about 1.8 MHz to about 30 MHz.
 - Depends on time-of-day, sunspots, effective antennas, efficient modulation.

Different Propagation types

The lonosphere

What ionizes the atmosphere?

- Ultra-violet and X-ray radiation from the sun.
 - About half the ionization comes from He⁺² 30.4 nm line.
- Energetic UV photon 'kicks' outer electron free from an oxygen or nitrogen atom – ionizing it.
- It's the *free electrons* that are responsible for refracting our radio signals.
- Free electrons eventually bump into another ion and recombine.
- Upper ionosphere lots of UV radiation available. Very few atoms – low density & pressure.
 - Result: only a few ions created but they live a long life. Net result is greatest quantity of free electrons.
 - When the sun sets, they recombine slowly through the night.
- Lower ionosphere less UV radiation available (absorbed above). Many atoms available – higher density & pressure.
 - Result: moderate number of ions created but they live a short life. Net result is lesser quantity of free electrons.
 - When the sun sets they recombine (disappear) quickly.

Ionization & Recombination

Ionization depends on sunspots

More sunspots \rightarrow 'roughly' more UV radiation

Last 4 Sunspot Cycles - smoothed

2000-2012 Sunspot Number: Daily, Monthly, and Smoothed

Day and Night Ionosphere

Figure 1.1 Day and night structure of the ionosphere.

Hop Length vs. Elevation Angle

F-layer: longer distances E-layer: shorter distances

Example of different modes

Figure 2.4 Examples of simple propagation modes.

Ionospheric refraction depends on the frequency.

Ionospheric refraction depends on the angle of incidence.

Measuring the Critical Frequency of the Ionosphere – "Ionosonde"

- 1. Set the frequency of the transmitter and receiver.
- 2. Launch short vertical pulse. Measure the time-to-return. Time \rightarrow 2 * Height.
- 3. Increment the frequency and repeat.
- 4. Measures vertical incidence worst MUF. Compute path MUF = Muf90/sin θ

longram MUF at 90 degrees (vertical) incidence. 'Critical Frequency'

Lowell Digisonde foF2 Height (km) STATION YYYY DAY DDD HHMM P1 FFS S AXN PPS IGA PS Sample Data 1996 Apr01 092 1934 SBF 005 1 085 100 -0+ CO 5.49 foF2 0-44.86 foF1 fxl 0-3 4.56 foF1p 2.96 0-2 foE 500 3.23 foEp 0-1 6.20 fxI 0+1 2.95 foEs 0+2 MUF 18.70 0+1 400 3.415 м 3000 D foF1 Xvh'F 185 h'F2 285 Xq+ 98 98 h'E 300 h'F2 Xqh'Es Q+ 227 zmF2 196 zmF1 106 Т zmE yF2 67 200 h'F foE yF1 40 N(h)-profile ųΕ 30 C-level 1 100 2 3 5 4 6 7 8 1 Frequency (MHz)

Some notes

- During the day lower ionosphere attenuates lower frequency signals. Thus 3.5 MHz is poor.
- After sunset, lower ionosphere disappears due to recombination 3.5 MHz is much better.
- The higher the frequency the less the attenuation – until the ionosphere stops refracting. This is called the Maximum Usable Frequency – "MUF".
- The MUF depends on the path.
 - High incidence angle = low MUF
 - Grazing incidence angle = higher MUF.
- As the ionization level drops:
 - We lose close-in communication (250 miles) first.
 - Longer distance communication (1000 miles) holds up longer.
 - The band has 'gone long'.

Path Prediction

- Things we know well:
 - MUF versus ion density how waves interact with ionosphere.
 - How the radio waves propagate.
 - Time & Date / The season.
 - Latitude and Longitude of the two end stations.
- Things we don't know well:
 - The amount of solar UV radiation. Only well correlated with smoothed sunspot number. We only have averages.
 - Heating and cooling of the ionosphere \rightarrow convective currents.
 - Unexpected sudden particle storms and X-ray events
- Approximate the behavior of the ionosphere with known science, plus *statistical data* from prior observations.
- Compute MUF with a probability of success.
- Free software available: W6ELPROP

MUF Map

August
Solar Flux = 80
K = 2

Notice 'skip zones' on 15m.

80m propagates close-in.

NVIS

- Near-Vertical Incidence Signal
- It's how we communicate over 200 mile path. High incidence-angle signals.
 - Medford, OR to Portland, OR: 57 degree elevation. 304 km path.
- 160m / 80m / 60m / 40m can support NVIS mode at certain times of the day.
- Antenna pattern should work well for higher-angle signals.

Medford \rightarrow Portland

June 18. Solar flux = 72

 TERMINAL A: 42.33 N 122.80 W Medford, OR
 Sunrise/Set: 0542/2042 ULT
 Bearing to B: 12.0 deg

 TERMINAL B: 45.00 N 122.00 W Portland, Oregon
 Sunrise/Set: 0530/2048 ULT
 Bearing to A: 192.5 deg

 SSN: 14.3 Flux: 72.0 K: 2
 Path Length: 304 km

Medford \rightarrow Dallas, TX

June 18, Solar flux = 72

TERMINAL A: 42.33 N 122.80 W Medford, OR SSN: 14.3 Flux: 72.0 K: 2

Sunrise/Set: 0542/2042 ULT Bearing to B: 106.4 deg TERMINAL B: 32.77 N 96.78 W Dallas, Texas Sunrise/Set: 0426/1831 ULT Bearing to A: 302.5 deg Path Length: 2515 km

NVIS Antenna Comparison

Medford \rightarrow Portland, OR – 80 meters

- 57 degree elevation angle for one-hop F-layer propagation.
- 80 meter 5-ft dipole is 13 dB worse than 70-ft dipole for this path (average ground) primarily ground and antenna loss.
 - Low antenna is earth-warmer (NOT cloud burner).

Summary

- UV radiation from the sun creates free electrons in the ionosphere.
- Free electrons refract HF radio signals.
- Frequency, incidence angle, sunspot number, latitude and longitude all impact the probability and strength of refraction.
- Result is a very complex relationship.
- We can predict signal strength & probability on a path if:
 - We have a good guess for solar flux & K index.
 - We know all the path parameters.

References

- "Introduction to HF Radio Propagation" Australian Government – IPS Radio and Space Services. http://www.ips.gov.au/
- Sheldon Shallon, W6EL propagation prediction program 'W6ELPROP' (free)

http://www.qsl.net/w6elprop/

- Carl Luetzelschwab, K9LA webpage <u>http://mysite.ncnetwork.net/k9la/</u>
- Solar Terrestrial Dispatch (real-time MUF and F2 maps) <u>http://spacew.com/</u>
- NW7US propagation webpage <u>http://prop.hfradio.org/</u>
- This Presentation <u>http://www.tapr.org/~n5eg</u>