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Frequency estimation by DFT interpolation:
A comparison of methods

Bernd Bischl, Uwe Ligges, Claus Weihs∗

March 25, 2009

Abstract

This article comments on a frequency estimator which was proposed by
[6] and shows empirically that it exhibits a much larger mean squared error
than a well known frequency estimator by [8]. It is demonstrated that by
using a heuristical adjustment [2] the performance can be greatly improved.
Furthermore, references to two modern techniques are given, which both nearly
attain the Cramér-Rao bound for this estimation problem.

1 Introduction

The problem of achieving a precise estimation of the fundamental frequency of a
noisy signal has been researched for a considerable amount of time. It has many
applications in different areas of engineering, not least in audio processing and mu-
sicology. Quite a number of algorithms has been published [5, 4] until today. These
methods often differ strongly regarding their general idea, area of application, pre-
ciseness and time complexity. This work deals with an empirical comparison of two
such algorithms for frequency estimation of simple sinudoids with noise. The basic
tool for this task is the discrete Fourier transform (DFT) and its efficient implemen-
tation the fast Fourier transform (FFT).

∗This work has been supported by the Deutsche Forschungsgemeinschaft, Sonderforschungs-
bereich 475.

1



2 Frequency estimation

Let the signal be a simple sinsusoid

Xt = µ+ A sin(ωt+ φ) + εt, t = 0, 1, . . . , T − 1

with additive noise εt, sampled at T points in time. In general the noise is assumed
to be Gaussian white noise with E[εt] = 0 and V ar[εt] = σ2 (although some cited
papers generalize upon this [7, 8, 9]). While all other parameters are unknown,
a frequency estimator ω̂ is sought, which is as accurate as possible and can be
computed efficiently in time. Minimizing the squared error seems to be a reasonable
first approach:

SSE =
T−1∑
t=0

[Xt − µ− A sin(ωt+ φ)]2 .

This equates to a maximum-likelihood approach. The Cramér-Rao bound for unbi-
ased estimators ω̂ is known and amounts to:

V ar(ω̂) ≥ 6σ2

T (T 2 − 1)A2
,

which contains apart from the cubic term T (T 2− 1) the signal-to-noise ratio (SNR)
A2/2σ2 (see [4] for a derivation).

2.1 Interpolation of Fourier coefficients

There are quite a number of algorithms for frequency estimation, which more or less
directly interpolate the complex-valued DFT coefficients

Yj =
T−1∑
t=0

Xt exp(−i2πjt/T )

or the real-valued coefficients of the periodogram

I(λ) =
2

T

∣∣∣∣∣
T−1∑
t=0

Xt exp(−itλ)

∣∣∣∣∣
2

,

where I(λ) is in practice only available at the discrete Fourier frequencies 2πjt/T :

Pk =
2|Yk|2

T
= I(2πjt/T )

The reason for this course of action is that the maximum of the periodogram
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ω̂max = argmax I(λ) is an asymptotically unbiased estimator for ω, so that also
asymptotically holds [8]:

T 3/2(ω̂max − ω) ∼ N

(
0,

48πf(ω)

A2

)
,

where f(ω) is the spectral density of the noise εt. However, the global maximum
of I(λ) is hard to compute numerically (in an efficient way) because of the many
local optima of the oscillating I(λ). One can neither use the maximiser of the
discrete periodogram Pk as an approximation - as the resolution of Pk is not good
enough, even for signals without noise, to get sufficiently precise estimations for
applications [6] - nor does choosing the maximiser of Pk as starting point for an
iterative optimisation of I(λ) guarantee convergence to the global maximum of I(λ).
But as the maximum of the periodogram and its two neighbours already contain
about 85% of the power of the spectrum, an interpolation of these three points
seems appropriate.

2.2 Algorithm by Ligges

Ligges [6] presents a heuristically motivated procedure for frequency estimation in
the area of musicology. As this algorithm should also be used for signals with
overtones or multiple tones and implements further practical aspects, it is more
comprehensive than the following estimators given below, but in the here considered
case of simple tones it can be reduced to the following: A parabola is fitted to the
maximum of the periodogram and its neighbouring frequencies and the peak position
of the parabola is used as an estimator for the tone frequency.

ω̂Ligges1 =
λ∗∗ + λ∗

2
+

(λ∗∗ − λ∗)(I(λ∗∗)− I(λ∗))
2I(λ∗)− I(λ∗∗)− I(λ∗∗∗)

= λ∗ +
2π

T

Pk+1 − Pk−1

4Pk − 2Pk+1 − 2Pk−1

Here, λ∗ denotes the maximising frequency of the periodogram, λ∗∗ the neighbouring
frequency with the larger and λ∗∗∗ the neighbouring frequency with the smaller value
in the periodogram.
Practically the same method was published by Voglewede in [10]. A further heuris-
tical adaptation to improve the estimation [6, 1] yields:

ω̂Ligges2 = λ∗ +
λ∗∗ − λ∗

2

√
I(λ∗∗)

I(λ∗)
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In his PhD thesis, Ligges [6] conducts an experimental evaluation of these two es-
timators and reports a mean error of approximately 2.2 Hz for the fundamental
frequency when using the second algorithm. He also compares his method to known
model-based approaches. Asymptotic distributions are not indicated.

2.3 Algorithm by Quinn

[8] uses an estimator, which in a similar efficient fashion interpolates three Fourier
coefficients, although he does not use the periodogram but instead directly works
on the complex DFT coefficients Yj of the data.

1. Let k be the maximising index of |Y 2
j |.

2. Let α1 = <(YkT−1/YkT
) and α2 = <(YkT +1/YkT

),

and δ1 = α1/(1− α1) and δ2 = −α2/(1− α2)

3. If both δ1, δ2 > 0, then δ = δ2 , else δ = δ1

4. ω̂Quinn = 2π(kT + δ)/T

Quinn does not assume the noise to be i.i.d Gaussian, but derives under quite weak
and somewhat technical assumptions (εt strictly stationary and ergodic, E[εt] = 0,
E[ε2t ] <∞, for further details see [8]) the following asymptotic distribution by using
a central limit theorem:

T 3/2

vT

(ω̂Quinn − ω) ∼ N(0,1)

where
v2

T =
16π5δ2(1− |δ|)2(2δ2 − 2|δ|+ 1)f(ω)

A2 sin2(πδ)

and f(ω) is the spectral density of the noise.

2.4 Algorithm by Jacobsen

As the following empirical comparison shows, neither ω̂Ligges1 nor ω̂Ligges2 produce
very good results. ω̂Ligges1 can be rectified, if one employs the same general idea as
in 2.3 and switches to the complex-valued DFT coefficients:

ω̂Jacobsen = λ∗ +
2π

T
<
(

Yk−1 − Yk+1

2Yk − Yk+1 − Yk−1

)
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Please note the other slight changes in the formula as well. This method was pub-
lished by Jacobsen in [3]. There are no further theoretical results concerning the
distribution of the estimator. Also, it’s not very evident, why exactly this adaptation
results in such an improvement[Jacobsen 2009, personal communication].

3 Empirical comparison

1000 frequencies for ω between 2 and 32 generated, while the noise was varied from
σ2 = 0 to 1. The amplitude A was set to 1 (so SNR was at least 0.5) and the
phase φ was selected randomly for the resulting 30000 sinusoids. Every signal was
sampled 128 times. Figure 1 shows the error distributions for all four estimators.
It is clearly visible in fig. 1 that the simple quadratic interpolation results in the
worst accuracy. Both algorithms by Ligges exhibit a much larger variance than the
methods by Quinn and Jacobsen, also the main mass of the distribution is not even
centred around zero. ω̂Ligges2 does improve on the variance to some extend, but
does not change the general, problematic shape of the error function. Jacobsen’s
estimator seems to have about the same quality as the one by Quinn.

Fig. 1: Empirical distributions of estimation errors
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To gain some further insights into the estimators, figures 2 and 3 show the devel-
opment of bias and variance in relation to the true frequency of the signal - first
without noise, then with σ2 = 0.2 and at last with σ2 = 0.4. While both estimators
of Ligges are strongly biased and also exhibit a large variance (which of course grows
with the noise), the remaining two algorithms of Quinn and Jacobsen seem again
roughly equal in quality, bias and variance being slightly different in different areas
of the bin.

Fig. 2: Bias and variance of the 4 estimators against the bin number of the true
frequency. The three rows correspond to a noise setting of σ2 = 0, σ2 = 0.2 and
σ2 = 0.4 respectively.
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Fig. 3: Bias and variance of best 2 estimators against the bin number of the true
frequency. The three rows correspond to a noise setting of σ2 = 0, σ2 = 0.2 and
σ2 = 0.4 respectively.

4 Best known methods near the Cramér-Rao bound

Apart from the already discussed methods, there a two other ones, which exhibit an
even lower MSE. The first one is an improvement of Quinn’s algorithm [9] ω̂Quinn,
where δ1 and δ2 are combined in a nonlinear fashion to a new δ and not selected
depending on their sign:

δ =
δ1 + δ2

2
− κ(δ2

1) + κ(δ2
2)

κ(x) =
1

4
log(3x2 + 6x+ 1)−

√
6

24
log

(
x+ 1−

√
2/3

x+ 1 +
√

2/3

)
The second is a further estimator by [7]. MacLeod’s estimator is - on a superfi-
cial level - similar to Jacobsen’s quadratic estimator plus an additional nonlinear
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correction term:

τ = Yk, Ri = <(Yiτ
∗) ,

γ =
Rk−1 −Rk+1

2Rk +Rk+1 +Rk−1

,

δ =

√
1 + 8γ2 − 1

4γ
, ω̂MacLeod = λ∗ + δ

2π

T
,

where k denotes the maximising index of the discrete periodogram and τ ∗ the com-
plex conjugate. Though one should note the different signs in the denominator of
γ and Jacobsen’s interpolation quotient and that the Yk are multiplied by a phase
reference to align them better with the phase of the periodogram peak [7].
It can be shown in both cases, that the variance of the estimators is quite close
to the Cramér-Rao bound. Jacobsen has published his own empirical evaluation of
these methods on his web page [2].

5 Summary

A couple of methods for frequency estimation of noisy sinusoids - all using the
interpolation of three Fourier coefficients - were compared. It was demonstrated,
that both algorithms by Ligges exhibit a large bias and variance. The first estimator
can be corrected and is then equivalent to an estimator by Jacobsen, which has a
roughly similar performance as a well known estimator by Quinn. References to two
further methods were given, which show an even lower MSE than the two mentioned
before and which are provably nearly optimal with regard to the Cramér-Rao bound.
In particular, the algorithm by Quinn has the advantage that asymptotic normal
distributions are available.
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