
Software Defined Radios - The Future is Now
By:
Bob McGwier, N4HY
Gerald Youngblood, ACSOG
Eric Wachsmann, FlexRadio Systems Software Engineer

Background
A Software Defined Radio (SDR) is a radio in which all modulation and demodulation functions
are defined, and therefore configurable, through software. This creates tremendous flexibility to
improve and adapt the capabilities of the radio over time without changing the hardware. The
potential for amateur radio experimentation is virtually limitless in terms of performance
improvement and the introduction of new operating modes.

The idea for the SDR-I 000 Software Defined Radio was formed about six years ago while
observing PSK31 running on a PC and sound card. Effectively, PSK31 uses the sound card and
PC as a Digital Signal Processor (DSP) to perform modulation and demodulation of a digital
signal. It became clear that a phasing-type transceiver could be built using the stereo inputs of
the sound card for the in-phase (I) and quadrature (Q) signals. Four years and many hundreds of
hours of study resulted a working transceiver that was described in the four part QEX series, "A
Software Defined Radio for the Masses!." Interest generated by the articles was so strong that a
decision was made to begin shipping the radio as a product in April of2003. The articles, as
well as complete information on the SDR-l 000, are available on the FlexRadio Systems website
at www.flex-radio.com.

The SDR-lOOO ships with open source software written in Visual Basic 6, allowing users to
modify and improve the code. Hams from all over the world have contributed to the
enhancement ofthe SDRConsole code including both user interface improvements and advanced
DSP code. Furthermore, a number of colleges and universities are using the SDR-l 000 as part of
their engineering curriculum.

The SDR-lOOO continues to evolve based on input from the amateur radio community. This
paper will focus on hardware and software enhancements that are in process and will be made
available in the first half of 2004. The writing is a combined effort by Bob McGwier, N4HY,
Gerald Youngblood, AC50G, and Eric Wachsmann, FlexRadio software engineer.

SDR-1000 and SDRConsole Architecture - Gerald
As stated earlier, the SDR-lOOO was described in some detail in the QEXseries (endnote 1). The
initial product consisted of a three-board set as seen in Figure 1. Recently, the enclosure shown
in Figure 2 was added to allow a number of enhancement products to be added to the radio.

159

"'~
Figure 1 - SDR-lOOO Board Set Figure 2 - SDR-lOOO Enclosure

The SDR-I000 incorporates a novel Quadrature Sampling Detector (QSD), which offers
exceptional dynamic range as well as performing the function of a high Q tracking filter. Figure
3 illustrates a simplified version of the detector. It may be thought of as a rotary switch that
rotates at the carrier frequency rate. Each of the four capacitors sample (or integrate) the RF
signal for 25% of the carrier period at intervals of 0°, 90°, 180°, and 270°. By differentially
summing the 0° and 180° signals and the 90° and 270° signals, we can generate the in-phase (I)
and quadrature (Q) signals respectively. With I and Q, we can demodulate or modulate any type
of signal. Not only is the carrier mixed to DC by the sampling process, the RC network formed
by the antenna impedance and the sampling capacitors forms a commutating filter with a
bandwidth of lI(pi*n*R*C) (where n is equal to the number of sampling capacitors).

,- - -. - --'-'-'0.-···- -'-·"-'-'-'i. ~

SO Ohm Antenna : ~ Fe = Fs/4

~
----+ I

Figure 3 - Single Balanced Quadrature Sampling Detector (QSD)

The SDR-l 000 uses a dual 4: 1 MUXlDEMUX in a double-balanced QSD circuit that offers a
6dB improvement in large signal handling over the single balanced circuit shown in Figure 3.
Using 5V parts, the QSD is capable of handling 10Vpp differential signals before going into
compression. The double-balanced circuit also helps to suppress even-order harmonics. This
large-signal handling capability allows more flexibility in gain distribution that is traditionally
found in direct conversion systems. Gain can be placed in front of the QSD to improve the noise
figure and reduce local oscillator radiation without significantly compromising large-signal
handling capability.

160

While analog radios are properly characterized for distortion using third order (IP3) dynamic
range, SDRs may not be adequately characterized in the same way. With a properly designed
SDR, the radio will be highly linear up to the point of Analog to Digital Converter (ADC) full­
scale saturation. When saturation is reached, the signal will be completely distorted and
unusable. This means that third order products may not be detectable right up to about 1-2dB
under ADC saturation. The full-scale voltage limit of the ADC will therefore set the maximum
signal without distortion in a SDR. This may be as high as 4-5Vpp on some converters.

Because the SDR-lOOO uses an offset baseband IF of 11KHz, it is possible to avoid many of the
issues that have traditionally plagued direct conversion receivers. Above 1KHz, most of the 1/f
noise, AC hum, and microphonic noise goes away and the dynamic range of the sound card
greatly increases. Once the quantizing level of the ADC has been reached due to the total noise
voltage in the filter bandwidth, it can actually resolve signals over a wider dynamic range than
the 6dB per bit indicated by the converters resolution. For example, a high quality 16-bit
converter has been measured to have a two tone, third order dynamic range of 90dB (RFE
installed). Therefore, the dynamic range of the ADC will have the greatest effect on the dynamic
range of the receiver in most configurations. Figure 4 illustrates two tone dynamic range using ­
20dBm tones at 1KHz spacing. Spurs may be seen approximately 95dB down from the
fundamental tones.

Figure 4 - Two Tone IMD Dynamic Range

The wide linear range of audio ADCs found in the better sound cards allows for some very
interesting capabilities. First, it eliminates the need for analog AGC. This means that AGC can
be performed digitally after the final filter, thereby greatly reducing the effects of strong adjacent
signals. The effect is to remove the "pumping" of the AGC that is characteristic of analog AGC
systems.

Further, by using double precision floating point values and fast convolution filtering in the
frequency domain, we can achieve bandpass filter shape factors that exceed 1.05:1 (500Hz BW).
A 2048-tap filter with 4096-bin FFT achieves stop band attenuation in excess of 120dB within
300 Hz of the 3dB cutoff frequency. Figures 5 and 6 demonstrate the frequency response

161

characteristics of the 500Hz and 2.7KHz filters respectively. A description of the digital AGC
system and fast convolution filters is provided in Part 3 of the QEX article series.

Figure 5 - 500Hz Filter Figure 6 - 2.7KHz Filter

On the modulation side, we can also use the magic ofDSP to do feed-forward compression of
the audio signal to greatly improve average transmitted power without excessive distortion. The
SDR-lOOO uses a method of feed-forward speech compression wherein the gain is turned down
quickly when the input signal is too large, but increases slowly if the signal drops off or ceases.
This prevents the gain from increasing quickly between words. The net effect is similar to that
of a good RF clipper without injecting distortion. VK6APH contributed the SDRConsole code
for the speech compressor based on the algorithm in Marvin E. Frerking's book, "Digital Signal
Processing in Communications Systems2

." •

Another capability of the SDR-lOOO is that it also functions as a high dynamic range spectrum
analyzer. The SDRConsole, as seen in Figure 4 above, may be calibrated with a signal generator
so that its spectrum display and digital readouts display the actual signal levels over a frequency
range equal to just under the sampling rate of the sound card (typically 40KHz). Use of
quadrature signals doubles the effective sampling rate over that of a single channel. As stated
earlier, signals may be measured over a range of 120dB using a high quality sound card.

SDR-1000 Hardware Enhancements
A number of new hardware add-on products extend the radio's capabilities and performance.
Now shipping are a new RF Expansion board (RFE) and the Down East Microwave 2M
transverter IF for the SDR-IOOO. A lOOW PEP integrated linear amplifier and an automatic
antenna-tuning unit will be added in the fall.

The SDR-IOOO was designed for general coverage reception up to 65MHz. This requires
compromise on the input band pass filters to minimize system cost. The RFE board adds 5th

order low pass filters for each amateur band to enhance third harmonic rejection. Further, it adds
a noise figure preamplifier ahead of the QSD that allows a 3dB receiver noise figure. With the
preamplifier added, the gain behind the QSD may be decreased by the same amount as that
added on the front end. This will not only improve the NF of the radio, but will also reduce local
oscillator spur amplification.

162

The RFE also includes an experimental impulse
generator that will allow for computation of the QSD
and sound card impulse response. The impulse
response will then be used to dynamically equalize
the I and Q signals in order to maximize image
rejection.

Table I provides dynamic range measurements that
were performed on the SDR-IOOO with RFE and
using an M-Audio Audiophile USB in 16-bit mode.
Two HP 8640B signal generators were combined
through 16dB pads with a Mini-Circuits ZFSC-2-1-12 combiner. Port to port isolation was
measured to be 80dB with a HP 8568A spectrum analyzer. Four different dynamic range options
are possible using the 10dB attenuator and instrumentation amplifier (INA) gain settings. Third
order dynamic range (or SFDR) is in the 88-90 dB range for all combinations. The noise figure
is only 3dB for the entire receiver in the highest gain setting. Typically, the lower gain settings
are preferable for all bands below 12M. All measurements are performed in a 500Hz bandwidth.

MDS

OdS ATT, 26dS INA

10dS An, 26dS INA

OdS An, OdS INA

1OdS ATT, OdS INA

Gain Setting
NF

SFDR
Full Scale - MDS

Table 1 - Dynamic Ran~e Experiments

3
-141

90
95

14
-130

89
94

17
-127

88
107

26
-118

89
108

163

The RFE sandwiches between the existing BPF and TRX boards so that the BPF provides front
end filtering for the low noise preamp. The 1W PEP driver amplifier (OPA2674) will move to
the RFE board as well so that the existing BPF board will filter its output. The RFE will also
provide control signals for the 2M microwave transverter IF, lOOW linear amplifier and
automatic antenna tuning unit described below.

Provision has been made in the enclosure design to incorporate a Down East Microwave
DEMI144-28ECK low-power transverter kit as seen in Figure 7. It is designed to function as an
IF for microwave transverters. In receive; it uses a high-level double-balanced mixer (+ 17dBm)
and a three chamber helical filter. It provides 50-100mW of linear output in transmit mode. TR
control and RF interface is provided through a single coax connection to the RFE board.

Fi ure 7 - DEMI144-28ECK 2M Transverter IF

The SDR-lOOO has the provision to add an external oscillator for the AD9854 DDS. The unit
ships with a 200MHz, low-jitter oscillator. Weak signal and microwave operation often dictates
precise frequency control, including GPS locked references. The SDR-IOOO can easily be
converted to a 10MHz reference by cabling a 10MHz source to the oscillator connector, moving
two pin jumpers, and setting the DDS PLL multiplier.

A lOOW PEP linear amplifier with low pass filters is being designed to fit in the SDR-IOOO
enclosure. The TR relay and filter relays will be controlled from the RFE board. Further details
are not available at the time of this writing.

To round out the SDR-IOOO accessories, a third party automatic antenna tuner will be integrated
into the packaging. Once again, control will be provided from the RFE board.

SDR Console Software - Continued Growth
One of the nicest parts of this entire project has been the tremendous outpouring of software,
ideas, new concepts, and contributed software by many different individuals. Each software
author's contribution is prominently listed in the source of the software which is released GPL.
There are now at least three functioning console packages in addition to that offered by Flex­
Radio and more are on the way. Home brewing of add-ons to radios is alive and well in this
project and embodied primarily in the software.

164

Noise Blanking and Pulse Removal
One of the banes of narrow band receivers are the effects of pulse noise. The worst offenders are
typically semi-periodic pulse trains such as line or alternator noise; but we would also like to
reduce the impact of single large pulses like switch openings and closings. One day, while
listening to the broadcast band and a horrible set of pulses arriving in a pulse train, we attempted
a truly simple noise blanker. If a signal value rose too far above the Root Means Squared (RMS)
value, it was blanked, or set to zero. The effects were immediate and surprising. We then
analyzed many noise blanking circuits and found they did little more than this, but in many
cases, required a pulse train to work properly. This pulse removal usually operates on the wider
signal inside the "roofing filter" while the pulse is still narrow. Then when the blanked pulse
sample is passed through the filters that follow, the filter acts like an interpolator to smooth over
the hole you have made in the signal.

In the lab, a weak signal was dialed up on 40 meters. It was a South American station that was
just above the noise floor. At the antenna, 4V pulses were added! The noise blanker was
engaged and the weak signal rose out of the hash and was completely readable. It is clear we are
able to not only duplicate the typical noise blanker, but also in some ways exceed its
performance. But there is no reason to stop there. We can afford to do a more complex
algorithm than this since we do not have to pay for the associated hardware. Our only cost is the
time to code the algorithm.

There are two promising algorithms we are exploring. We have developed one such algorithm
and it is now included in the SDRConsole. Image processing algorithms have often developed
rank order statistics in an attempt to look in the neighborhood of a pixel to see if "it fit" into the
overall picture. If it does not "fit in", then it is declared to be speckle noise. Its value in the
image is replaced by a combination of the surrounding pixels that more fairly represents the area
of the offending pixel. The technique works wonders in the removal of speckle noise from the
Image.

We wondered how well this might apply to the removal of pulse noise in one-dimensional
signals such as ours. In fact, we found it had already been investigated. Sanjit Mitra of the
University of California Santa Barbara wrote a paper in which he described this exact algorithm.
In his paper, he explains how to calculate the statistics and performs several tests. He called it
the Signal Dependent Rank Order Mean Noise Reduction algorithm. How it works is really
straightforward. We will consider our digitally sampled signal in groups of five adjacent
samples

X(t)=[x(t-2),x(t-2),x(t),x(t+1),x(t+2)]

We will take every sample but the middle one and sort them into an increasing value array.

W(t)=[w(0),w(1),w(2),w(3)]

We will compute from this ranked ordering, the rank order mean. This simply means we will

take the middle two values and average them.

165

!let) =[w(I)+w(2)]*0.5

We will compare the signal at time t, x(t), with this rank order mean and then to its rank ordered
neighbors. We will set two thresholds. We will test to see if it departs from the behavior of its
nearest neighbors at one threshold. We compare it again to its farthest neighbors in our four
long rank order vector against a larger threshold. If it does depart from the behavior of its
neighbors more than these threshold values, we will replace the signal with the rank order mean
!l(t). This has an immediate impact on the processed signal versus the blanked signal. We do
not just zero out the signal and pray the filtering which follows will fill in the hole adequately.
Anyone who has listened to a receiver with an activated noise blanker adjacent to loud signals
knows how the AGe and cut-off action of the noise blanker can be modulated by these strong
signals. In the SDROM case, we replace the offending value with a value that is determined
from a smoothing of the surrounding values.

Initial Test Results of SDROM
In support of the picture-is-worth-a-thousand-words argument, we include the following in
Figure 8 from our Matlab experiments when developing the algorithm. We have four signals in
this graph. The blue trace (top) is the incoming simulated signal. It was the test signal during
our development. It is a two-tone signal plus noise. We have added pulses to the signal. We
have zoomed into a region of 160 samples around a pulse. The red trace (second from top) is the
raw signal without pulses. The green trace (third from top) is what a traditional noise blanker
would do and the black trace (bottom) is the SDROM output.

The differences are subtle to the eye, but profound to the ear. The large spike is clearly evident.
We chose this spike in order to more clearly demonstrate the differences in the algorithms
because it occurred near a peak voltage in the signal. At sample 62, you will notice that the
blanker has just zeroed the signal, which causes a sharp edge, and the auendant clicks Gust like
key clicks) that accompany such an occurrence. The final black trace, the SDROM pulse noise
canceller, has replaced the pulse with a smoothed version of the signal without the pulse. There
will be no key click-like phenomenon with this approach. A traditional noise blanker
incorporates these sharp edges that spray energy all over the spectrum, just like a key click.

1.5 r----.---.....---.--~--.-------.---.....-----,

-0.5

-1'V'\0JVV"fV~,

160

Figure 8 - SDROM compared to Noise Blanker

166

Nothing can more dramatically demonstrate this than the power spectrum.

Figure 9 - Raw Signal

Power Spectrum

Figure 10 - Noise Blanker

Figure 11 - SDROM

167

The differences are observed immediately if pointed out. The noise floor outside the area of the
two tones is raised in the blanked signal over the signal with the pulse present. The SDROM
output has the noise floor depressed by 10 dB from the signal plus pulse and more from the
blanker. This extra energy will not be mixing in a nonlinear fashion with signals of interest in
the SDROM output. It is a marked improvement over the noise blanker. But it is not perfect.

The primary drawback to the SDROM as implemented by Mitra, et. al. is that it treats the pulse
in the same manner as the blanker insofar as it makes the assumption that a pulse is a single
isolated event and limited to one sample. This is easily improved on by doing SDROM
recursively. That is, we consider the filtered signal when deciding whether to replace a value.
This will allow for wider pulses than spikes. We have not implemented this but we expect small
dB improvement in the noise floor from this added wrinkle.

Improving Image Rejection
The ultimate in noise pulse removal would be to know what the pulse looks like and to subtract it
from the signal. This might seem miraculous until you know that Leif Asbrink has approached
this in Linrad as describe in several recent QEX articles. Leif attempts to find the pulses and
subtract their pulse shape, using two parameters from the incoming narrowband signal: the phase
angle and the amplitude. In our attempts to make a real radio out of the SDRConsole, it was
thought to be a deficiency of this approach that it required the user to determine a single pulse
shape through a measurement procedure done once and assumed correct. It is clear that this is
not perfect, though it produces good results in VHF+ noise and has been utilized by many
VHFIEMElMicrowave users. The imperfection shows up in the need for Linrad to continue to
blank with the zeroing algorithm those small pulses that make it past this. To the extent that you
do not have the pulses correct, or the amplitude or phase correct, you are ADDING PULSE
BACK into the signal. It seemed that we could, in fact, do a complete automatic job of
determining more parameters and improving the performance.

It has been decided to add a single pul~e-generating engine just before the mixer in the new add­
on RFE board. Rather than reiterate all of the advantages of this new board, we will detail our
approach to the pulse shape here. (See Hardware Enhancements section for more on the RFE
board)

A terrific job of image rejection can be done if you know the phase and amplitude imbalance
between the I and Q channel in the incoming signal. It would be ideal if this could be measured
directly. We believe we can do this with a pulse generating mechanism. In our case, we need
not know the exact relationship of our impulse response through our system, but rather its
relative deviation from ideal. This is then easily added (convolved with) the filtering done for
SSB, CW, etc. to remove the image in order to make both the I and Q response flat and equal
with linear group delay across the spectrum of interest. In addition to accomplishing image
rejection, this will give us the pulse shape of the ideal pulse entering the system and allow us to
do a more complete job than Linrad can do with the one-size-fits-all impulse response. When we
change bands (at a minimum), we will re-estimate the impulse response correction.
Experimentation will allow us to determine if it needs to be done more often than once per Mhz
change in frequency.

168

To that end, we derived a slow repeated pulse from a signal generator so that we could isolate
one pulse at a time. The following graphs show a pulse as it has passed through the SDR-1000
hardware and has been captured upon passing through the most important element in any system,
the sound card. The graph in Figure 12 show's the imaginary channel of the filtered signal in the
area of one of these captured pulses. In a perfect world, this and its accompanying real part
would be exactly the impulse response of the filter we have applied in the SDR-1000 console
software that is applied for SSB detection. It would have nearly flat response in the passband
and no phase or amplitude distortions. However, we live in the real world of real components of
our mixer, instrumentation amplifiers in the SDR-lOOO and op-amps in the AID's in our sound
cards. All contribute to distortion that hurts image rejection and keeps us from doing fancy noise
reduction. Since we designed the bandpass filter in the IF, we know its impulse response
perfectly. We register the location of the pulse and place it where we believe we have captured
most of the response that can be seen above the noise floor. We compare that to the complex
impulse response of the filter and correct for distortions. This will yield "perfect" image
rejection. It will also allow us to apply the subtractive pulse canceller in a completely automated
way since we will have to account only for perturbations from the ideal of the now determined
impulse response.

o.15,.----r----r----,--------,,........-.....,..---.-----,

0.1

0.05

·(lO5

-0.1

-0.15

-0.2 .1.-.--5...LO~-----,10L,-O-·--,...L-... -~~----,-+----,-3lll...,.J ..•.'::-o-.."..,...,-Ja50
0 50

Figure 12 - A pulse time waveform in the imaginary channel

In most of the modem transceivers available to us, we have DSP processors which do
automatic noise reduction and automatic notch filtering. Most of them (if not all) use a Least
Mean Square (LMS) adaptive filter first described by Widrow, et. al. and commonly referred
to as the "Widrow" filter. This filter has a serious drawback. It uses the longer term
correlations present in tones, speech, or Morse to produce a filter which either enhances them
and reduces noise or notches them if they are undesired. This correlation is done very
weakly and at one lag or "look into the past". A steepest descent based on this stochastic

169

gradient is done. It is clear that this is a lossy and noisy look at the correlations needed to
make this filter; yet it does work.

We would like to improve on this algorithm. One could use many different lags. As many
lags as you will allow filter taps. This leads to a very expensive algorithm called Recursive
Least Squares (RLS) and the unstable but fast versions of it known as Fast RLS or FRLS.
Fortunately, there is another way that has recently been discovered outside of the area of
noise canceling and notch filtering. We have adapted it for our use. It was developed in the
echo-canceling world for multiple sensor microphone systems. Once you look past this
function, you quickly see it is immediately applicable to other issues. It is known in that
world as the Affine Projection Algorithm (APA) when you allow several more than one lag,
but all the lags are adjacent to each other. There is an obvious extension of this to multiple
lags that are not necessarily adjacent to each other, but cover a longer span. This can be
extremely helpful in capturing more information about the signal. This version is known as
Normalized Least Mean Square with Orthogonal Correction Factors (NLMS-OCF). A
Google search will reveal numerous online documents if you need more detailed information.

Here, we will describe our first experiments and implementation. We have limited ourselves
to APA in the Visual Basic console. This limitation will be removed in the upcoming
versions of the console that will use other signal processing libraries and languages. For
now, let's describe the results. We chose to use 3 lags to compare to our current signal
sample in order to determine a good filter for our single experiment in notching a two-tone
signal. We used the APA algorithm with a delay of65 samples at 44100 samples per second.
At that delay, we look at a filter with only 32 taps. We attempted to strain the algorithm with
a short filter. In the end, we were amazed. Even in a noisy signal, given a short filter, we
converged with the APA at a rate that was heretofore only achievable with RLS. In addition,
it is automatically normalized for changing signal strengths due to AGC. It exhibits the
better tracking behavior that is more akin to LMS, rather than RLS, which shuts down and
stops listening unless you force it to listen by adding a memory leak constant to the RLS
algorithm.

In 48 samples, we converged to a notch. In the power spectrum shown in Figure 13, we have
two traces. One is before the automatic notch while the other is after. We have artificially
shifted the notched spectrum down so they do not lie on top of each other. This extremely
impressive result can only get better and more stable as we allow non-adjacent correlations of
NLMS-OCF and improved performance across the spectrum if we choose distances that
represent non-periodic signals more accurately.

170

Figure 13 - Notched Power Spectrum

A serious drawback to the radio has been the way it operates as a CW rig, despite a Herculean
effort by W5SXD. Frank Brickle, AB2KT, and author N4HY have come up with a technique to
use Modulated CW (MCW) in order to gain full QSK without the drawbacks of using MCW.
Since this is a software radio, we can afford to have an external circuit with a keyer chip and a
tone generator that generates MCW. Some may be worried about spectral purity with this kind
of excitation. However, we do not need to worry. We will do detection on the MCW signal
inside the radio software rather than automatically transmitting it. We will then reconstitute the
CW, with adjustable shaping and weight to be transmitted to the antenna. We will soon have
RTTY and PSK31among the other modes already implemented. Rob Heard, in his own Delphi
Version of the console, has implemented Slow Scan Television (SSTV) reception and is working
on transmit capabilities. The full spectrum of narrow band communications on the ham bands is
possible with this radio.

Recently, N4HY proposed an relatively easy scheme using the SDR to do frequency hopped
spread spectrum using a compression-in-time algorithm that will enable the addition of
synchrony signaling on every dwell while not losing or covering up the signal of interest.

Frank Brickle, AB2KT, has written an interesting article in a recent issue of QEX, which will
lead inevitably to Cognitively Defined Radio. What this means is that the radio will detect a
signal, classify it, and configure itself given the built in artificial intelligence to do so in the
software defined radio.

AB2KT and N4HY are writing a full-blown console using Qt-Free as the OUI development
engine and will be releasing the LinuxlAlsa SoundlQt console soon.

171

The following is a list of software developers listed in the latest beta version of the console
software. The things they have contributed are too numerous to list but the radio would not be
nearly as feature rich nor would it function as well without their contributions:

W5SXD, G6UVS, AA6YQ, W3IP, VE7APU, VK6APH, WKOJ, N7TQM, N4HY, and AC50G

New Object Oriented Architecture
While a firm groundwork has been established using the Visual Basic 6 (VB6) interface, it has
become increasingly important to look at a new platform. With Microsoft making moves toward
no longer supporting VB63

, we began to look at building the SDRConsole in a more recent
language. Rather than simply porting the current code, we decided to take a bold step and
redesign the entire console from scratch.

Using the lessons learned from the VB6 design process, we began with a very high level view of
the software and broke each section into smaller logical blocks. Examples of such blocks are
Digital Signal Processing (DSP), DataStream and Hardware. These blocks would be further
broken down to a size that is easily maintained. Dissecting the project in this way allowed us to
break up the coding responsibility much more easily. Using a Unified Modeling Language
(UML) tool called ArgoUML helped us to visualize our software model. Figure 14 shows a
portion of an early prototype ofthis model. Given the open-source nature of our project, easing
the ability for customers to contribute directly toward the development of this new platform
would be crucial to the software's continued success. With open source code and customers
contributing code in their own specific areas of expertise, we have a uniquely diverse
development team.

ThiI ~ abstracts tht

-1noWoo'''­n ~In'o. ltU iftbe
dIb N MUtd 1Ml AI1: or ,...,..
-...... (lo0oi.

=...'-'-':~=.....::.=}'----.,.../

"urn,. : lot

Ot1Conbo() . wold

SiltCotlbol(). "old

SetA!IContJoIIO; "old

OetAIlConuol-:); void .------=====';:....J Open(). "old
ReHt() . 'Wold

R.dloEw~ : void

This~.

~ ..the~

~toOOt\NlClt:l

...... 'Yawn (cIiwC
of s.-.et).

S,tv.. "...O. """d

O.tv.lu.n : 1IIold

iAu....nno ,•• Id

dmlnt\: lIIoid

lb, nznupac41 ha ~s

~ttSlOAI

snt,"s/JOt'llSeOtliUtlt
v-...s (st••) and lJIiIIt'lt*
(to< NhooIudon)

I l/'~
f----=--=--'--'---+ - - """-'--'J.......-..­
~=~--""!!.jt ~ _=, _

: wold
S.,.b,ndlnBufft' : I,.,.
e....b'MOu19l1fft' 1M

Con1ig: Int

CUutlnButf..,: i".
cn,ntO\ltBuff., Int

F,.m*$P.relook: Int

SlimpleR.t. : In1

OptftStrumo: wold

CtOH:9burro: "old

Proc4M8uff.(): void

Figure 14 - UML Model

172

One of the major design points in our new software model was to provide support for both a
binary executable interface as well as a web interface that could be accessed from any computer
with access to the Internet. This would not be an easy undertaking, as we would have to consider
such things as audio compression, data encryption and serialization. Despite the development
cost, this feature is necessary for a cutting edge product such as the SDR-lOOO and would open
new doors of opportunity for remote radio applications. Imagine being able to pull up your radio
interface and even transmitting using your PDA. This is the type of flexibility that we are aiming
for with our new design.

In our search for an appropriate language, our options were somewhat narrowed by our strict
criteria. While still wanting to offer an easy-access version for beginning programmers, our
product would shine best in a multithreaded environment. We essentially needed something with
the easy visual interface that Visual Basic offered while at the same time offering the power of C
or C++. After a bit of research, C# seemed to be the logical choice. Further investigation
revealed an extensive class library in the .NET Framework. With defined namespaces such as
System'xML, System.Threading and System.Security, we would be able to quickly integrate
powerful features such as RSA encryption, multithreading and serialization without spending
months developing these libraries on our own4

• Linux and C#.NET versions of the console are
being developed by Flex Radio, N4HY, and AB2KT. We expect these versions to be in Beta
testing within the next month.

One of the more exciting possible applications with the new object oriented architecture and the
use of more modern development tools available in C#.NET and Linux is the easy ability to
remote the transceiver hardware and to do the signal processing at the other end of the remote
connection. An extremely exciting prospect for doing coherent combining of the signals from
multiple radios is immediately available to the serious experimenter with minor modifications to
the radio to allow for the injection of coherent DDS oscillator signals.

Having discussed the web-based access to the radio, it becomes obvious that not everyone is
equally endowed with Internet connections. It would be very easy for the local server running,
for example, a RealServer to save a known user's configuration, internet connection speed, and
other factors so that when the unique user connects to the radio, the remote transmission to that
user is configured appropriately for them. This information is easily stored in a database local to
the radio and accessed upon connection.

In the early days when we were doing the initial development on the radio, some obvious
expediencies came immediately to bear on the issue of getting the radio finished and software
developed that would enable the experimenter to begin tinkering. AC50G, as the developer, was
not a DSP expert and not a real-time computing expert. A decision was made to use Intel's
Signal Processing Library (SPL). This enabled fast, accurate, well written algorithms to be
immediately available to the Visual Basic 6 console without having to be written from scratch,
debugged, and optimized. However, as we move on to do other things with the radio and as Intel
has dropped its support for SPL and substituted a fee for license based library known as PPL, we
have decided to explore other options and some have become available for our experimentation
with the new object oriented console.

173

We would like to re-use code across all platfonns whether it be Linux, MacOS, or Windows.
Recent developments have helped tremendously in that regard. A project that solves most of the
really tough issues of dealing with audio and sound card issues was found in the PortAudio API.
The PortAudio API project is on the web at http://www.portaudio.com. It has versions that
enable one API to be used on Linux, MacOS, and Microsoft Windows. All versions of the code
can have one interface to the sound system in the computer on which they are running. Eric
Wachsmann has written a C# wrapper to talk to PortAudio for Microsoft Windows Visual Studio
.NET 2003 and the API already comes native to run on Linux, and Unix (including FreeBSD
which will run on the Mac).

We need a similar kind of library to do the primitive signal processing procedures that SPL did
for us. In addition, we wish to begin doing the APA, NLMS-OCF, N-channel combining
algorithm work and experiments not yet conceived by us but which we are fully aware will have
features in common. The primary features will include a solid library to do linear algebra and
matrix/vector manipulations as well as optimized fast Fourier transforms (FFT).

The latter was available for Visual Studio 6 as well as Linux and the Unices in the form of
FFTW (see http://www.fftw.org). N4HY has recently ported FFTW-2.1.5, the most recent
release version, to Microsoft Visual Studio (MSVS) .NET 2003 with all the project and solution
files. This is available through a link on the Flex-Radio web site on the resources page.

The signal processing and linear algebra routines have been captured in a U.S. government
supported open source effort known as VSIPL (see http://www.vsipl.org). Heretofore, no one
known to us had ported this library to Microsoft Windows tools. It compiled and ran natively on
Linux, Unix and MacOS (FreeBSD) systems. N4HY has managed to get all versions of VSIPL,
which is written in C, to compile and make static and .dlllibraries for MSVS.NET 2003. All
library versions including using FFTW-2.1.5 as well as the native FFT in VSIPL, both static and
dynamic have been made and tested.
This library is also available as a link on the Flex-Radio resources page.

I G. Youngblood, AC50G, "A Software Defined Radio for the Masses: Part I," QEX, JullAug 2002, pp. 13-21; "A

Software Defmed Radio for the Masses: Part 2," QEX, Sep/Oct 2002, pp. 10-18; "A Software' Defined Radio for the

Masses: Part 3," QEX, NovlDec 2002, pp. 27-36; "A Software Defined Radio for the Masses:! Part 4," QEX,

Mar/Apr 2003, pp. 20-31.

2 Marvin E. Frerking, Digital Signal Processing in Communication Systems, Kluwer Achedemic Publishers,

Norwell, MA.

3 Product Family Life-Cycle Guidelines for Visual Basic 6.0, http://msdn.microsoft.com/vbask/support!vb6.aspx,

Accessed 24 Feb 2004.

4 Class Library, http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/c;pref_start.asp,

Accessed 24 Feb 2004.

174

