Deconvolution in
Communication Systems

The title contains a fancy name for a DSP process that
can reveal details of wave propagation paths without
prior knowledge of their nature. Multipath and
other distortions may be detected and corrected to
some extent with this technique. It’s also useful in
DSP filter design. Come discover how 1t’s done.

ultipath distortion is the
enemy of many radio com-
municators, whether they

areinterested in moon-bounce, terres-
trial microwave or HF. Multipath may
be generally described as a situation
in which radio signals take many dif-
ferent routes between transmitter and
receiver. Those routes quite often have
different lengths, so received infor-
mation consists of a multitude of
superposed copies of the transmitted
information, smeared over time.

It might seem at first that there is
nothing DSP or any other technology
can do about that distortion, sinceitis
caused by physical phenomena beyond
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our control. But where knowledge ex-
ists beforehand about the nature of the
transmitted signal, it turns out some-
thing often can be done. I'll try to ex-
plain what I’ve learned about that.

Modeling Multipath
Environments

Imagine you're standing just inside
the Taj Mahal (Fig 1). The clack of shoes
meeting tile and the hush of whispers
bounce lightly from the walls and ceil-
ing. Your friends entered just moments
ago. You scan the foyer; they aren’t in
sight. You call out to them. Your voice
echoes through the halls and chambers
of that place for what seems like an
eternity—until security personnel
come and tell you not to do that!

Your friends, having reached a dis-
tant part of the building by now, hear

the sound; but it doesn’t sound much
like you. In fact, it sounds more like a
dull roar because your voice has taken
somany paths totheir location. All the
echoes overlap so much that words and
even syllables are indistinguishable.
You are in a reverberant environment.

Your friends begin walking toward
you. As they come closer, you speak
again, This time, they understand you
and reply. The number of paths and the
differences in their lengths have now
decreased; the time smearing and
overlap of echoes are now little enough
toallow you tobe intelligible. You have
demonstrated a useful model for rever-
berant environments: many discrete
paths, each with its own transit time
or delay and each with a particular at-
tenuation. See Fig 2.

In the figure, multipliers h, have
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values less than unity and represent
the attenuation on paths whose delays
are proportional to n. Notice that no
signal propagates directly from the in-
put to the output; the output is derived
only from delayed signals. That indi-
cates the usual situation: Your friends
are some finite distance from you, even
when in view. So even on a direct path,
there is always a positive, non-zero
propagation delay. The model also ap-
plies when your friends are around the
corner; they cannot hear your voice di-
rectly, but only the sound that is bounc-
ing off the walls, floor and ceiling.

When the delays z-? in the model are
spaced apart by the same amount of
time, which we shall call the sampling
period, the set of attenuation con-
stants h,, is referred to as the impulse
response of the system. In fact, Fig 2 is
exactly the same as the block diagram
of a finite-impulse-response (FIR) fil-
ter, a common construct in DSP.!
While it is perhaps strange to think of
the Taj Mahal as a filter, thatisindeed
what it is. When the constants h, are
chosen strategically, the system may
be made into almost any filter shape
imaginable. When they are undefined,
as in the case of sounds propagating
through buildings or radio signals
through whatever medium, the trans-
fer function (frequency response) is
also undefined.

If the impulse response of a system
can be found (the model), then another
system may be built having a transfer
function that is the inverse (the inverse
model) of the original system. When the
two systems are cascaded, the final
output is a restored version of the input
signal (the desired). For the Taj Mahal
or a set of radio propagation paths, the
hard part is discovering the original
impulse response. When the environ-
ment is known and fixed (as in the Taj
Mahal), the impulse response may be
discovered by modeling the structure
and doing ray-tracing experiments on a
computer, for example. When the envi-
ronment is unknown (a radio path), we
must resort toinverse modeling togeta
clue about the corrupting system’s im-
pulse response.

That is fairly easy when the un-
known environment is fixed. When it
is changing, it is much more difficult.
Even then, though, DSP provides
weapons to combat the enemy. Follow
me into a discussion of how those two
cases are generally handled.

Inverse Modeling
When performing the operation
"Notes appear on page 51.
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shown in Fig 2, the output is the sum
of all the delayed, attenuated signals.
That sum is called a convolution sum;
theinput signal is said to be convolved
with the impulse response. A conve-
nient notation for the convolution
sum is:

r, =Lf:lhnx,m (Eq 1)
n=0

where r, is the output at discrete time
t, x;_p is the original input signal at
time t-n, and L is the length of the fi-
nite-impulse response. The transfer
function of that system may generally
be found by taking the discrete Fou-
rier transform (DFT) of the impulse
response, k,:

(Eq 2)

L-1 s
-jon
H,=3 he™’
n=0

Where wis the angular frequency in
radians/s. The goal of inverse modeling
is to discover the system that has a
transfer function equal to the recipro-
cal of H, Were a copy of the original
input signal, x;, available, that would
be easy to do, as shown in Fig 3. The
corrupted signal r, forms the input to
the inverse filter, whose coefficients are
adjusted in some way based on a com-
parison between the original input sig-
nal, x; and the doubly processed output
of the inverse filter, y;. When the error
signal e, goes to zero, the inverse filter’s
frequency response G, is the reciprocal
of the corrupting system’s:

0. =(1,)" ®a9
Inverse filter G is said to “deconvolve”
the original input signal and the

Fig 1—A reverberant environment.
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Fig 2—An FIR model of a reverberant environment.
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corrupting filter's response, restoring
the original signal. In the steady state,
the inverse filter performs the opera-
tion:

L-1
Y= Z&nltn =%
n=0

(Eq 4)

The transfer function of the cas-
caded system is a single, unity-ampli-
tude impulse. A fixed delay is used in
the upper path of the original input
gignal to compensate the delay
through the two filters.

It’s perhaps surprising that impulse
response g, is not necessarily the in-
verse DFT of G, although that has
sometimes been stated, incorrectly.
The proof of that is a bit more complex
than what I want for this article.
Oppenheim and Schafer take up the
subject briefly.2

Now it's time to mention how impulse
response g, is adjusted during inverse
modeling to efficiently achieve the de-
sired result. The most popular method
is called the least-mean-squares or
LMS algorithm. It was published by
Widrow and Hoff in 19603 and it’s the
same as algorithms currently used for
adaptive noise reduction and automatic
notches in radio receivers.

Inthe LMS algorithm, each value or
coefficient of the impulse response is
adjusted at each sample time accord-
ing to:
gn =&n+20ei%, (S
for L values of n, where jtis a constant
chosen to alter the speed of conver-
gence and the amount of error in the
steady-state solution. Additional
details of the behavior of adaptive fil-
tering systems may be found in the
Amateur Radio literature* and will
not be treated further here.

You may be questioning how the
methods described above can be use-
ful, since they require a copy of the
signal originally sent. One application
is found in the suppression of echoes
on telephone circuits. Anotheris found
in DSP filter design.

Telephone-Line Echo Suppression

On a two-wire, full-duplex tele-
phone circuit, hybrids are used at each
end to segregate transmitted and re-
ceived signals. The hybrids must
achieve significant isolation between
the two signals lest a signal transmit-
ted at one end arrive at the other end
toberetransmitted toward the sender.
The result is a series of echoes. When
termination impedances are not per-
fect on the line or imbalance exists,
thisg echoes are always present. They

are most discomfiting to the talker—
and perhaps also to the listener—es-
pecially over lengthy, overseas paths
having transit times of 300 ms or
more. This sort of thing can also be a
problem in speakerphones.

The system of Fig 3 may be em-
ployed to eliminate the echoes, since
copies of both transmitted and re-
ceived signals are present at the trans-
mitter. Thatis, in fact, what telephone
companies currently do to handle the
situation. I notice some long-distance
companies need to check the operation
of their echo cancelers. Echoes were
rampant in the early days of long dis-
tance, then the problem seemed to
have virtually disappeared for a long
time; but now, I regularly get reports
of its reappearing.

LMS Filter Design

This example is one of direct model-
ing rather than inverse modeling, so
it’s a little different from what we’ve
covered so far; but it’s still useful be-
cause it shows something about the
underlying concepts of system model-
ing in general.

Imagine we want to find the finite
impulse response corresponding to
some particular filter shape—say, a
low-pass. First, we must characterize
the desired transfer function, H,, com-
pletely by both its amplitude and phase
responses. Amplitude versus frequency
is more important at this stage than
phase; we dream up a pseudo-filter hav-
ing the desired response. FIR filters
generally have linear phase responses;
the phase versus frequency plot is a
straight line. We place this pseudo-fil-
ter into the modeling system shown in
Fig 4. Notice that the pseudo-filter need
not actually exist as an FIR filter; it is
just a block that replicates the transfer
function we want, and we may perform
that function in any way.

To make the adaptive filter, G, in
Fig 4 converge to match the pseudo-
filter’s response, the generator signal

x;'s spectrum must contain energy at all
frequencies of interest. White noiseisa
good first choice for this signal source.
Start the thing going and when the
LMS algorithm has minimized the er-
ror e;, the adaptive filter will have con-
verged on the impulse response most
closely matching our desired response.
Depending on the length (L) of the
adaptive filter, it may be difficult to
achieve the desired response at certain
frequencies exactly. That may be ad-
dressed in LMS filter design by chang-
ing the amplitude-versus-frequency
content of the generator, x,. A large
relative amplitude of the generator’s
content at some particular frequency
allows the filter to more closely meet its
specification at that frequency.

When a Desired Response
Is Not Available

For radio signals, the telephone sce-
nario aboveis not particularly relevant.
The question becomes “How can we use
inverse modeling when a copy of the
original signal is not available?” The
answer is that the signalx; used to com-
pute error signale; and used in the LMS
algorithm need not be an exact copy of
the original; it need only be a reason-
able approximation of that signal. Any
information about the original is useful
in nudging the algorithm toward con-
vergence at the start of adaptation; we
then get a better deconvolution that, in
turn, helps the next iteration toward
the optimal solution. Let’s look at some
examples that illustrate how to make
inverse modeling work without an ex-
act copy of the original signal.

Adaptive Equalization of a
Dispersive Medium

Adispersive medium is one in which
different frequencies travel at differ-
ent velocities. That is, the group delay
is not constant. To grasp these terms,
let’s say we have a medium or channel
with frequencyresponse H . Response
H, may be completely characterized

Input x; (‘—1

Fig 3—Block
diagram of an
inverse-modeling
system.

-
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by its amplitude response, A, and its
phase response, @,

H, = A, e'% (Eq 6)

The time delay (or phase delay)
through the channel is:
tprop = (Eq 7)
and the group delay is equal to the
differential time delay:

¢, =2
£ do
A medium is said to be dispersive if
the group delay is not a constant func-
tion of frequency; that is, if:

2
4" ¢ 20
dw?

Dispersive propagation is very simi-
lar to multipath, since it also implies
that received information is smeared
over time. Now let’s say that we have a
dispersive medium that is not horribly
so. We also stipulate that noise levels
are reasonably low, so as not to be a
problem in demodulation of the data
signal we’re going to send through the
medium. To further simplify what fol-
lows, let’s also say the channel has a
very large bandwidth.

Adaptive equalization may conve-
niently be discussed by considering the
case of a single carrier, modulated by a
single binary signal. While that isnota
common situation on telephone lines,
the format is still used over radio quite
a bit. In any case, it is the simplest in-
stance, and study of m-ary or multiple-
carrier systems stems from it.

Now a simple data transmitter en-
codes a binary one as a transition of one
polarity; a binary zero is encoded as a
transition of the opposite polarity. That
is true no matter the modulation for-
mat. FSK, PSK and other traditional
formats may employ rapid polarity
transitions that, unless otherwise lim-
ited, may cause the signal to occupy a
rather large bandwidth. Even through
a channel of large bandwidth, disper-
sion alters the shape of the transitions
received because the carrier and modu-
lation sidebands propagate at different
velocities. That ultimately limits the
data rate that may be supported.

Let’s look at what happens when a
very sharp one-zero transition passes
through our dispersive channel (see
Fig 5). What started out as an instan-
taneous state reversal now becomes
smeared in time; its shape is deter-
mined by the impulse response of the
channel. The group-delay-induced dis-
tortion makes recovery of the data
more difficult. We can say that the
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(Eq 8)

(Eq9)

received signal is the convolution of
the original signal and the impulse
response of the channel. Its spectrum
is the product of the spectrum of the
original signal and the transfer func-
tion of the propagating medium. In
other words, convolution in the time

domain is equivalent to multiplication
in the frequency domain.5

Forward Equalization

It is often desirable to equalize the
channel so that it can support higher
data rates. The goal of an equalizer is

X

H Fig 4—Block
Pseudo - Fllter diagram of an LMS
filter-design
o) % . algorithm.
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Fig 5—A: A sharp data-state transition. B: Transition as received through a dispersive

medium.
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Fig 6—Block diagram of forward equalization.

to achieve a constant group delay and
a flat frequency response. To equalize
achannel, insert an FIR filter (G) into
the data path and add a demodulator
and quantizer at its output, as in
Fig 6. So how do we decide how to ad-
just the equalizer? Well, one way is to
arrange for a known training sequence
to be transmitted and to compare the
equalized signal with a locally gener-
ated copy of that sequence. The LMS
algorithm may be used to adapt the
equalizer. Then the block diagram is
as shown in Fig 7. That system is fine
for channels whose conditions do not
change rapidly, as long as retraining
can be tolerated periodically.

Decision Feedback Equalization

A method for deriving d; using only
the adaptive filter’s output was dis-
covered by R. W. Lucky of Bell Labora-
tories,® obviating the need for a priori
knowledge of the original signal.
Lucky (an apt name!) found that d,
could be approximated by the demodu-
lated signal itself, as shown in Fig 8.
The bet is that if the dispersion is not
severe, the demodulator generates bit
decisions that are close to correct, and
the adaptive filter moves toward the
correct solution.

As it happens, this system works
well when not much noise is present
and when the dispersion is mild. Per-
formance is improved when the sam-
pling rate is increased beyond just
once per bit.

That is fine for digital signals, but
what about analog signals? The deci-
sion-making process is much tougher
in that case; but the processes of lin-
ear prediction and autocorrelation
may be used to steer the algorithm.
Deag'ls of that are beyond the scope of

Transmitter Medium Receiver

e G
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L

Fig 7—Forward equalization using a training sequence.

this paper. For more information, re-
fer to Widrow and Stearns.”

Homomorphic Deconvolution

Now that is an esoteric phrase, but
what does it mean? Well, it’s a method
of deconvolution that uses nonlin-
ear transforms of signals, which are
manipulated algebraically. More spe-
cifically, the nonlinear transform
used is the logarithm. I'll show how a
useful property of logarithms reduces
multiplicative systems to simple su-
perposition and why that is useful in
decon-volving signals.

As mentioned before, convolutionin
the time domain is equivalent to mul-
tiplication in the frequency domain.
When a signal passes through a
propagation medium, the spectrum of
the convolved signal is the product of
the original signal’s spectrum and the
frequency response of the medium.

For aninput signal x; having spectrum
X, and a medium having impulse re-
sponse i, and frequency response H ,
a convolved signal y, has spectrum:
Y, = X, H, (Eq 10)
Now for that useful property ofloga-
rithms, which is:
log(ab) = loga + logb (Eq 11)
If we take the logarithm of Y,, we
have:

IOS(YM)= lng(mem)

= log(X,,) +log(H,,)
= me +Chn|

(Eq 12)

Taking the inverse Fourier trans-
form of Eq 12 therefore results in the
sum of two time-domain sequences:
cy, =‘»_;-)‘:g +ch‘ (Eq 13)

¢yt is called the cepstrum of y,. That
term and a bunch of other funny terms
were coined in a paper by Bogert,
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Healy and Tukey.8 The block diagram
of a system that produces it is shown
in Fig 9.

Eq13is a useful result since, in many
reverberant environments, the two
cepstral components c,, and c,; are
easily separated because they are so
different. For example, let’s say that
most of the energy in c;; lies at low
values of t and most of the energy inc,;
lies at high values of ¢. That might be
the case for a voice bouncing around in
the Taj Mahal. Simple window func-
tions may segregate the individual en-
ergy contributions. Then each cepstral
component may be transformed back to
aregular time sequence using a process
thatis theinverse of Fig 9. That inverse
system is shown in Fig 10 for one of the
components, c,y. Its output is a decon-
volved (restored) version of x;.

Homomorphic deconvolution re-
quires minimal information about the
nature of the original signal and of the
propagation medium. The basic re-
quirementis that the significantlength
of the medium’s impulse response be
considerably different from the rates of
change in the original signal. Where
echoes are spaced at a constant period,
the contribution of ¢;; may be removed
with a window that looks like a notch
filter, removing only those samples that
fall within a small range of values of ¢.
Inthatlast case, though, a less-complex
method may exist for de-reverberation.

A Sigma-Delta Method
for De-Reverberation

In the special case where all echoes
are spaced apart in time by a constant
amount and those echoes decay in am-
plitude geometrically, a more straight-
forward method may be used to recover
the original signal. Such reverberant
environments may be found in radio
communications systems and in public-
address venues like large baseball or
football stadia, for example. You may
hear the announcer get on the public-
address system and say, “Now batting,
batting, batting...number nineteen,
nineteen, nineteen...Tony Gwynn,
Gwynn, Gwynn!”

The sound you hearis the sum of the
direct signal and an infinite series of
regularly spaced echoes declining in
amplitude exponentially. The situa-
tion may compactly be represented as
a summation:
e =*§0#"(x;~nk) (Eq 14)
where x; is the input signal, g is a posi-
tive constant less than unity and n is
the number of sample times between
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echoes. This is clearly a causal system
since output depends only on present
and past samples. The original signal
may be recovered using “first-differ-
encing” (discrete differentiation):

Ve~ Win = % 1 (%rne) =1 Z 2 (Zenhon)
k=0 k=0

(Eq 15)
This is approximately the difference
between samples of the corrupted sig-
nal spaced one echo-time apart; but
this method ignores all echoes but the
first. We obviously have to wait for
that first echo to occur to retrieve its
energy. The system introduces a delay
of n sample times before producing the
desired output. Additional energy con-
tained in all subsequent echoes is lost
with this algorithm.

The total signal amplitude contrib-
uted by any particular original sample
is the sum of the direct signal and all
its echoes, which, assuming the origi-
nal signal is of unity amplitude, is:

Eyta = Tt A
k=0

;, (Eq 16)

=] -

Inpu

That means that when ¢=0.93, less
than one tenth of the total energy is
recovered by using only the first echo
—a lot of the energy is in the other
echoes. Signal-to-noise ratio (S/N)
would be degraded by about 20 dB. In
this case, it’s clearly worth an addi-
tional wait to improve our lot.

To recoup the energy in all echoes
would take an infinitely long period, so

[N
- +
Transmitter Medium Recelver I
di
Input x, & H I %ol Datect .
G
l LMS
| Algorithm  [*

T

Fig 8—Decision feedback equalization using the received data as a desired signal. in
this method, an adaptively filtered copy of the detected signal is subtracted from the
unmodified received signal to cancel intersymbol interference. D’ is the output.
Feedback equalization is typically used in concert with feed-forward equalization. For

more detail, see Reference 7.
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Fig 9—Block diagram of a cepstral transform.
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Fig 10—Block diagram of an inverse cepstral transform.
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we can only regain the energy over some number of echoes,
L, for which we are willing to wait. The delay incurred isnL
sampling periods. To recover the energy contained in echoes
beyond the first, consider taking “second-differencing,” or
the weighted difference between sam-ples two echo times
apart. We have:

Ye—H 23’;_2;. = i H k{xz—nk)_ﬂ 2 i U k(x:—nk—zn}
k=0 k=0

=X tHX

(Eq 17)

S BZ =Y~ B Yegn — %
where x, is determined by Eq 15 above. x,_, was x; n
samples ago, and is added to the result of Eq 17 to yield
X4_p +H1 X;_n,. A similar operation may be performed for
¥—18 ¥y 3n, ¥e—H4 ¥4_4n, and so on, continuously, to build
energy from echoes as they get older. In that way, almost
all the energy can be regained from a reverberant envi-
ronment having a single, uniform echo.

Performance of the Sigma-Delta Method

Over a finite number of echo intervals, L (during which
we wait nL sample times), the energy recovered is not as
much as in the infinite summations. It is only:

L1,
E =Zu
k=0
(o), pt (Eq 18)
Ing) Llng

If 4=0.93 and L=8, the S/N degradation would be about
1dB, since about 88% of the energy would have been recov-
ered.

The algorithm counts on absolute frequency and phase
accuracy between transmitter and receiver. Serious
phase distortion or frequency errors would render the
sigma-delta method unusable. It is not well suited to SSB
operation, therefore, without a pilot carrier and a synchro-
nous (phase-locked) receiver, or other suitable demo-
dulators.

The algorithm is also quite sensitive to phase noise in
the local oscillators of radio transceivers and to dispersive
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propagation—the thing so similar to the problem it at-
tempts to solve! So this algorithm turns out not to be a very
good pick at all, but it is relatively simple compared to
homomorphic processing.

Summary

This article showed convenient modeling methods for re-
verberant and dispersive environments. Systems for
deconvolution were discussed that correct for multipath and
dispersion; they even produce a model of the corrupting sys-
tem in most cases. In some instances, the model of the cor-
rupting system may be the thing that is sought. That is the
case inionosphericstudies or in planetary science, where the
impulse response of the model represents a map of the atmo-
sphere or planetary surface, respectively. Deconvolution
systems are sometimes adaptive and thus are capable of han-
dling changing propagation conditions. Homomorphic decon-
volution is generally not adaptive and relies on some knowl-
edge of the differences between the desired signal and the
nature of the medium.

Research is ongoing to use adaptive receiving arrays and
homomorphic processing on weak, convolved signals. Moon-
bounce (EME) modes are a particular target of that research.
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