
GMON - a G-TORT” Monitoring Program
for PC Compatibles
by Richard Huslig and Phil Anderson, W0XI

The G-TOR data communications protocol is an
innovation of the technical staff of Kantronics
Co., Inc. It was introduced in March 1994 as an
inexpensive means of improving point-to-point
digital communications in the HF radio bands.
It has been implemented in the KAM Plus
and KAM-E and is now offered for licensing
to other manufacturers.

Monitoring of G-TOR frames is difficult since
a variety of frame formats exist as shown in
Figure 1. Although a data fkme is always
1.92 seconds in duration, it might be sent at
100,200, or 300 baud; it might contain real
data or Golay parity bits in ASCII or Htiman
encoded form; and it may be received in Lower
or Upper Side Band. Each data frame must
be deinterleaved at the receiver and this con-

Figure 1
G-TOR Frame Structures

G-TOR Frame Structure Before Interleaving

Data Status CRC
(1 byte) (2 bytes)

I
69 data bytes @ 300 baud 1 \
45 data bytes @ 200 baud I \
21 data bytes @ 100 baud , \

\00 \0rIlllill\

G-TOR Changeover (BK) Frame Structure

e 1.92 set *

Change-over
Ack

Data Status CRC

(2 bytes)
(19 bytes) (1 byte) (2 bytes)

sumes a large amount of processing time. Data
may exist in BK (BreaK or changeover) frames
too; although, they are sent at only 100 baud
without interleaving. In addition, no synchro-
nizing flags exist at the beginning or end of the
frames. Each data frame contains data, a sta-
tus byte, and two CRC bytes. The connect and
disconnect frames, sent at only 100 baud, con-
tain destination and source address fields in
place of the data frame’s data field.

Hence, monitoring on the fly - in real time -
is best accomplished using a brute force algo-
rithm with the system shown in Figure 2.

Figure 2
G-TOR Monitoring Setup

‘9 I 1

- HF Radio - KAM Plus r
serial 386/486 PC

_ comm running GMON
L I

1200 SPS 150 charlsec

Frames are received by an HF radio, demod-
ulated by the KAM Plus (or TNC), and pro-
cessed in 1.92 second segments by GMON,
a PC-based basic terminal program that
runs on a 386 or 486 compatible and includes
G-TOR monitoring capability. The KAM Plus
is configured via the GSCAN command to
sample the receiver modem digital data 1200
times per second. These data are then shipped
continuously via the serial port to the PC
where GMON carries out the monitor pro-
cessing, looking for valid frames at each sam-
ple. This paper will describe the development
of GMON, provide a functional description of
the protocol, and detail the theory of GMON
operation.

Background

To realize our goal of developing a terminal
program to monitor all G-TOR frames, we first
developed GOFF, a program that would moni-
tor G-TOR frames from a file of sampled data.
This program, written in BORLAND C, oper-
ated offline from the TNC. GOFF performed
100,200, and 300 baud tests and a 100 baud
BK test on 1.92 seconds of modem data sam-
ples. The baud tests consisted of deinterleav-
ing, packing, CRC checking, Golay decoding,
and again CRC checking. The 100 baud BK
test consisted of shifting and CRC checking.
If the CRC was valid, then the status byte
was decoded; if the frame was a connect, dis-
connect, data, or BK frame, the frame was
suitable for display If the frame was a data
frsme and the status byte also indicated Huff-
man coding, then Huffman and RLEn decoding
was performed. All other frames with invalid
CRC or status byte were discarded.

GOFF began as a brute force algorithm which
performed all tests on every sample at 600
SPS (Samples Per Second). A 7027 byte
(7027*8/600 = 93.7 sec.) data fde took 140 sec.
to process and display on a 50 MHz 486DX
machine. After analyzing and optimizing the
loops with the highest iterations, we cut this
time to 105 sec. Then, after optimizing the
assembly code generated from the C code,
we cut it to 80 sec. Next, we realized that if we
cut the number of tests by processing only 2
samples of each bit at each baud rate, we could
cut the number of tests per sample from 4 to
a little more than 1, even though we had to
increase the sample rate to 1200 SPS. By phas-
ing the tests, we cut the time to 60 sec. Next
we optimized the deinterleave process by stor-
ing the state of the interleave buffer at each
baud rate and each bit phase, so that to dein-
terleave, we simply rotate the interleave buffer
and shift in the new sample. This cut the time
to 29 sec. Now, removing the CRC test of the
inverted data and optimizing the assembly
code by using string instructions, we cut the
time to 16 sec. Further optimization yielded
14 sec. Processing the same file on a 386DX-33
took 39 sec., and after turning the turbo switch
off (i.e. 386DX-8), processing took 85 sec. Pro-
cessing on a 286-16 took 111 sec. Further
speed enhancement is possible if the trace
option is turned off. Or, if a valid G-TOR frame

is detected by a valid CRC, most processing,
except deinterleaving and shifting, on the
next 1.92 sec. of data, can be skipped. Also if
the sme G-TOR frame is detected again by
means of the second bit phase or a retrans-
mitted frame which was not acknowledged,
only the first frame is displayed.

After the GOFF program was debugged
and optimized, then we developed the
GMON program by integrating GOFF with
a terminal program written in C. Later, we
reworked GMON’s modlules, especially the
G-TOR monitoring modules, to follow a speci-
fied calling convention so that the terminal
program modules handled all data display and
logging. The main G-TOR monitoring module
was written in BORUND C, and, therefore,
follows the BORLAND C calling convention.
The other 2 modules were written in assembly.
These 3 object modules were combined into a
library file called GMOINTER.LIB, which can
be linked with any other terminal program
which adheres to the BORLAND C calling
convention.

Functional Descriptiion of GMBN

Sampling is initiated by issuing the GSCAN
2200 command to the KAM. When 8 samples
are collected, the character is sent over the
RS232 communication port at a constant 150
characters per second. Again, Figure 2 illus-
trates the G-TOR Monitoring Setup.

GMON receives the character in its interrupt
driven receive buffer. If the receive buffer is
not empty, the 8 samples are demultiplexed
and stored in the sample buffer - one sample
per byte.

The sampling and phasing process, illustrated
in Figure 3, demonstrates that only 2 samples
of the bit are tested at each baud rate and that,
typically, only 1 test is performed per sample.
The samples are either shifted and stored in
one of two BK frame buffers or deinterleaved
at 100,200, or 300 baud. and stored in one of
6 interleave buffers depending on the baud
rate and bit sample phase. GMON does a 100
baud test every 6th sample (sample phase l), a
200 baud test every 3rd sample (sample phases
0 and 3), a 300 baud test every other sample
(sample phases 0,2, and 41, and a 100 baud
BK test every 6th sample (sample phase 5).

81

Figure 3
GMON Sampling and Phasing (x marks test performed at sample specified)

300 baud

200 baud

100 baud

BK 100 baud

I I I I I I
0 1 2 3 4 5

This results in a 6 sample cycle. ARer 1.92
seconds of data have been collected, the sam-
ples are either shifted and stored (if sample
phase = 5) or deinterleaved and stored in their
respective buffers. The order and steps of pro-
cessing these frames are displayed in Figure 4,
the GMON flow chart.

If the sample phase is not 5, then deinter-
leaved data is packed into a frame buffer. The
CRC is calculated from the f%ame and com-
pared with the CRC stored in the frame. If the
CRCs match, then the frame buffer is Huffman
decoded ifthe status byte indicates HuEnan
encoding. Now the frame buffer is ready to
be sent to the video monitor. If the CRCs do
not match, then the frame buffer is Golay
decoded, stored in the Golay buffer, and CRC
tested. If the CRCs match, then the Golay
buffer is HufEnan decoded ifthe status byte
indicates Huffman encoding. Now the Golay
buffer is ready to be sent to the video monitor.
If the CRCs do not match, GMON discards the
frame. GMON does not attempt to do Golay
error correction.

If the sample phase is 5, then the CRC of one
of the BK frame buffers (selected by the bit

I I I I I I I
6 7 8 9 10 11 12

I- 6 sample cycle repeats 4

phase) is calculated from the frame and com-
pared with the CRC stored in the frame. If the
CRCs match, then the frame buffer is Htiman
decoded if the status byte indicates HuEnan
encoding. Now the frame buffer is ready to be
sent to the video monitor. If the CRCs do not
match, GMON discards the frame.

Theory of Operation
In this section, the ideas outlined above are
expanded in detail.

Sampling
GMON receives a character of 8 samples
of the modem’s data in its interrupt driven
receive buffer at 150 characters per second.
The 8 samples are demultiplexed and stored
in the sample buffer - one sample per byte.

Phasing

Phasing reduces the number of tests per sam-
ple and, therefore, increases GMON’s speed.
GMON processes only 2 samples of the bit at
each baud rate. Therefore of the 12 samples
every 10 ms, GMON does a 100 baud test on

Figure 4
GMON Flow Chart

Deinterleave

Interleave BufferI
100 -0 i 100 -1
200 -0 i 200 -1
300 -0 / 300 -1

Pack

Shift

*
BK Frame BufferI
100 -0 i 100 -1.

I
Frame Buffer i - -I

Frame Buffer i r ’
1 b

=
CRC

Compare
=

CRC ’
#

Compare 4
#c

Golay

1 ’
Golay Buffer i 1

;: -Huff ~
8 ,

/ vidgitor 1

= Huff
C R C l

Compare
l

#

2 of the 12 samples, a 200 baud test on 4 of
the 12 samples, a 300 baud test on 6 of the 12
samples, and a 100 baud BK test on 2 of the
12 samples. This establishes a 6 sample cycle:

Sample Baud Test

6*n+O 300 and 200

6*n+l 100

6*n+2 300

6*n+3 200

6*n+4 300

6*n+5 100 BK

Deinterleaving

GMON’s deinterleaving scheme significantly
reduces the time needed to deinterleave 1.92
seconds of data. Instead of shifting all samples
(576,384,192 for 300,2OC1,100 baud respec-
tively) for each new sample, this scheme, illus-
trated in Figure 5, rotates the interleave buffer
and shifts in only the new sample; each 12.bit
word shift is equivalent to 12 bit shifts. The
samples are deinterleaved at 100,200, or 300
baud and stored in one of 6 interleave buffers
depending on the baud rate and bit sample
phase. Each 300 baud interleave buffer con-
tains 48 120bit words, while each 200 baud
interleave buffer contains 32 12-bit words, and
each 100 baud interleave buffer contains 16

Figure 5
Interleave Buffer

1

48 0 1I sample

12-bit words. The interleave buffering scheme
arranges the samples, which are exactly one
bit time away, to be adjacent to one another
in the same buffer. This scheme simplifies
the deinterleaving task by simply shifting the
words up one, bringing the top word down to
the bottom and left shifting only the new sam-
ple into the LSB of the last word.

Shifting

The bit shifting task for BK frames, illustrated
in Figure 6, simply shifts samples into one of
two frame buffers depending on the bit sample
phase. Since the LSB of the BK frame’s first
byte is transmitted first, the new sample is
right shifted into the MSB of the 24th byte.
After 192 bits are shifted in, the first bit occurs
at the LSB of the first word.

Figure 6
BK Frame Buffer

Packing

The packing task, illustrated in Figure 7,
merely packs or formats each pair of 120bit
interleaved data words into three 8 bit bytes

in the frame buffer. The 48 120bit words of
the 300 baud interleave buffers pack into
72 bytes of the frame buffer. The 32 12.bit
words of the 200 baud interleave buffers
pack into 48 bytes of the frame buffer. The
16 12.bit words of the 100 baud interleave
buffers pack into 24 bytes of the frame buffer.

Figure ?
Packing 2 12.bit interleave words to 3 frame bytes

15 11 3 0 15 11 7 0
5 I 9 I I .

0 I
I tI 0 I II II 1 A

w I
1 1 1 I I 1 J

7 0 7 3 0 7 0

CRC Checking

Next the CRC is calculated from the frame and
compared with the CRC stored in the frame.
Much of the CRC calculation has been reduced
to simple table lookup. If the CRCs match,
then the frame buffer is tested for Hu%nan
encoding. If the CRCs do not match, then the
frame buffer is Golay decoded, stored in the
Golay buffer, and CRC tested. If the CRCs
match, then the Golay buffer is tested for
Huffman encoding. If the CRCs do not match,
GMON discards the frame.

Huffman Decoding

The frame or Golay buffer is Haman decoded
if the status byte indicates Huffman encoding.
Huffman compressed data frames may contain
RLEn (Run Length Encoding) codes. An RLEn
code is a 19 bit code made up of a unique 14 bit
Huffman code followed by 5 bits which repre-
sent a number n, O-31. When an RLEn code
is encountered in a data frame, the previous
character decoded in the frame should be
repeated an additional N times where N is a
number which depends on n and the number
of bits used by the previous Huffman charac-
ter. Refer to the G-TOR PROTOCOL for the
Htiman table as well as the RLEn coding
table.

84

Golay Decoding Summary

If the CRCs do not match, then the frame
bufXer is Golay decoded and stored in the
Golay buffer. The Golay decoding has been
reduced to table lookup for quicker process-
ing. The 4K 12.bit words of this table were
generated by matrix multiplication of all
combinations of 120bit word inputs by the
Golay Generator Matrix:

FFE
6E3
B71
5B9
2DD
16F
8B7
C5B
E2D
717
B8B
DC5

In conclusion the GMON terminal program
efficiently monitors G-TOR frames using the
fastest assembly language techniques. It also
reduces the number of tests by testing only 2
samples of each bit. The deinterleave process
is simplified by storing the state of the inter-
leave buffer at each of 3 baud rates and each
of 2 bit phases, and therefore only the current
sample is sh%ed in afier the interleave buffer
is rotated. The CRC and Golay decoding is
simplified by table lookup.

GMON’s companion oflfline G-TOR monitor-
ing program, GOFF, can also monitor G-TOR
frames from sampled dlata stored in a disk file.
This program is needed for slower PC compat-
ible machines like the PC-XT. Kantronics Co.,
Inc. also provides GMONTER.LIB, a library
of BORLAND C++ compatible object modules,
which an external program can call to do the
G-TOR monitoring process.

G-TOR is a trademark of Kantronics Co., Inc.
BORLAND C and BORLAND C++ are registered
trademarks of Borland International Inc.

