
Application Software for Packet Radio

A Packet Chess program is used
to demonstrate the utility of

Application software for Packet Radio

Robert Taylor, KAGNAN
Dewayne Hendricks, WASDZP

Introduction

To date, there has been little use made in amateur packet radio of application
software to provide a wide variety of services to the packet community. Most packet
software delivers a limited range of capabilities such as file transfers, mail and
database queries (White Pages). We feel that the use of higher levels of applications
software is possible even given the constraints of today’s packet speeds, that can
offer a wider range of services. We use a program called Packet Chess to
demonstrate how such services can be delivered. Packet Chess demonstrates how it
is possible to have a real-time game operate over packet with a graphical user
interface and at low data transfer speeds.

Problems with Packet Software

Current packet software is far too text oriented. There are too many commands
to memorize and understand. For a new user, the command structure is not
intuitive. The emphasis on text makes an ‘on-the-air’ session more work than fun.
A different approach which would be more user friendly would be the use of
graphic images. However graphical images are too difficult to utilize because a)
current packet is slow, and graphical images would take too long to transmit., and b)
there is a lack of standards, which could be used to exchange graphical information.

Some solutions using Application software for packet

What do we mean by application software for packet? When connected
stations utilize similar software, and this software is specifically written to provide a
particular service, then we call these programs applications. The Packet Chess
program described below is an example of this concept, since it is written specifically
to facilitate the playing of chess. This applications program addresses the problems
we cited above in a number of ways.

By making extensive use of a graphical user interface, it eliminates the need to
memorize a large number of commands. You can present the player with the
appropriate choices at the appropriate times, making program use much more

210

intuitive. Further, the use of similar application programs reduces the need to send
large amounts of data in order for the programs to interoperate. Since the programs
start out with the same “shared data”, a program can simply “refer” to data, rather
than transmit it. For example, in the Packet Chess program, instead of sending the
entire image of the whole chess board with each move, we can just send the move
information itself, since the program at the other end already ‘knows’ what the
board and pieces look like, and the location of all pieces. This means you can use
graphical images, without the need to transfer large amounts of data over a
relatively slow connection.

PACKET CHESS

What is Packet Chess ?

Packet Chess is a program written in 1988 by Dewayne Hendricks (WA8DZP),
and Rob Taylor (KAGNAN), to demonstrate the utility of a different approach to
application software on Packet Radio. The program was designed to operate on the
Apple Macintosh personal computer and to take advantage of the unique user
interface and capabilities available on that system. Figure 1 below shows the initial
screen which the player sees once the program is started. At this point, a selection is
made as to either start the game or to initialize the session parameters. The player
proceeds with their choice by “clicking” on the appropriate button with the mouse.

P a c k e t C h e s s
Chess ouer Packet Radio

bY
Robert Taylor, KA6NRN

Dgwayne Hendricks, WA8DZP

I Set Options 1
Start

1

211

What the program does.

Packet Chess permits two people to play chess over packet radio. Our design
goal was to design the user interface so that the play of the game would be similar to
what would occur if two players were actually facing each other over a chessboard in
the same room. The program does NOT play chess, it simply allows two players to
exchange moves easily. While playing, each player’s screen looks like a chess board
(Figure 2). To make a move, the player just “picks up a piece and moves it”. This
operation is performed by using the mouse to position the cursor over the piece and
then clicking the mouse to select the piece and then using the mouse to move the
piece to the desired location. You don’t have to worry about commands to your
computer, or your TNC, or even chess notation. Since all moves are displayed on
both ‘chess boards’ at the same time, you simply play chess as normal!

Fig 2

How to use Packet Chess

First, a player enters the opponent’s callsign and other parameters for the
session, and then presses the ‘connect’ button. Once connected, you just play chess

1by moving the chess pieces. When a chess piece is moved (using a ‘mouse’), a text
string is generated (such as “Move white queen to x y”). This text string is then sent
automatically to the other program, which then makes the corresponding move on

2 1 2

that screen. The players never have to type in any ‘command’, they just play chess!
The players can send messages to each other at any time. To do this they just enter
there message in the “Output” window on the chessboard and select the “Msg”
button. This capability simulates the normal dialog the players would have if they
were sitting across from each other. There is an option to use a modem instead of
packet to allow the program to be used over telephone lines. There is also a button
that causes the entire board to be reset to the starting configuration. There is no
attempt to validate the legality of any moves. Our goal was not to build a chess
playing program, but simplv allow two plavers to have a chess game as thev
normally would.

How was it written 1

The Packet Chess program was written in HyperTalk=! This language is used
by the HyperCardTM program on the Macintosh=M computer. HyperTalk was
selected because the language can easily handle graphical objects and the other
components of the Macintosh user interface. Since HyperTalk is a high level
language, the programming was fairly simple. A set of subroutines were written in
assembly language to send/receive information from the TNC and setup the
necessary options on the Macintosh serial port.

On-Line Help

No matter how ‘easy’ you think your application is, it would probably benefit
from some level of on-line help. On-line help is available in the Packet Chess
program.. Figure 3 shows the screen which the player sees when he selects the help
button on the chessboard screen. The player can use the mouse to select the topic of
interest by selecting the appropriate index tab at the bottom of the screen. The
graphical nature of HyperCard allows for an interesting way of presenting help
information since images of information being discussed can be included in the
help text.

213

0 Introduction

_m____________ -- ._.. - . .
Fig 3

Messages

To send a message to your opponent, simply type your message text
inb the first line of the box on tie lower lefthand side marked ‘Out
Window’, and press the button (on the right hand side) marked ‘Msg’.
The ‘Out Window’ may be cleared at any time by striking the ‘Enter’ key.

To receive a message, just keep an eye on the ‘In Window’. Both
moves and messages will be displayed there. Messages will have the
let&s ‘MSG’ at the beginning. A distinctive tone will announce the
arrival of a message from your opponent. The ‘In Window’ may be
cleared at any time by striking any ‘Arrow’ key.

Fig 4

2 1 4

Figure 4 shows in detail one of the help screens. All help information is
available at any time during a game.

Some ideas for other ‘Packet Programs”

Many other forms of packet could benefit from our new approach to
application software. For example: emergency communications between hospitals
could be implemented as a “form” that gets filled out on the computer screen. The
user would simply ‘check-off’ which hospitals to send the message to. On receipt at
the other locations, the message would display/print out in the same format in
which it was entered. Another example would be emergency co-ordination centers
could utilize a large collection of maps. The locations of accidents and/or people
and vehicles could be plainly indicated. Maps could be made to zoom in and out.
This could be done verv efficiently because each site would have digitized forms of
the maps stored locally. All
would be a simple command
remote site is a map of the
locations, along with any text

that would have to be transmitted to the remote site
like “display map 87E“! All the user would see at the
accident area, and people/vehicles in their reported
messages.

Future Directions

Although the packet chess program was designed for ‘regular’ AX.25 packet,
our current interests are in developing TCP/IP related applications. We want to
generalize the ability of other applications to interoperate via TCP/IP. There are
plans to incorporate Inter-Process Communication (IPC) ability into the Macintosh
version of the KA9Q Internet Protocol Package. The would permit a single, stable
version of the Macintosh version of the KA9Q package to work with a constantly
growing set of applications.

Summary

Many packet services would benefit from application packet software. This is
an opportunity for hams to truly “advance the state of the art”, especially in the area
of emergency communications. While much important work is being done in the
area of network software, we cannot overlook the need for application level
solutions. Improvements in the ‘ease of use’ and functionality are necessary and
useful step in the evolution of packet radio.

2 1 5

