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1. Introduction 2. New Features) and Enhancements

Amateur radio use of the DARPA Inter-
net protocols (“TCP/IP”)  has grown from a 2,l. AX.25 Support
PaPer
severa

proposa 1 during the “protocol wars” of
1 years ago to a well-established reality

today. Because the TCP/IP software is free and
available to radio amateurs and all other non-
commercial users, it is hard to say exactly how
many are using it. One rough estimate is the
number of Internet addresses that have been
assigned from the “network 44” block for ama-
teur packet radio: about 1,000 amateurs in
several dozen countries. The package has also
gained considerable popularity outside of ama-
teur radio, especially in universities.

With the popularity of TCP/IP on amateur
radio has come another most welcome develop-
ment: the appearance of others making substan-
tial contributions to the software effort by creat-
ing new features and enhancing existing ones.
Several of these contributors have documented
their work in other papers in these proceedings,
and any other potential contributors are also
encouraged to do so. In this paper I will review
the TCP/IP developments and experiments of
the past year. Although I will mention several
contributors by name, the project has grown
much too large for this to be an exhaustive list;
I hope no one will feel slighted if they are
accidentally omitted.

In this paper I will also comment on some
of the lessons learned so far, and then discuss
possible directions for the future. As expected,
much has been learned about the operational
aspects of true computer networking on amateur
packet radio. We’ve also learned quite a bit
about coordinating the development of a com-
plex software package when volunteers all over
the world are involved.

A complete AX.25 Level 2 implementa-
tion has been added to the package. Its primary
purpose is to provide hop-by-hop acknowledge-
ment of IP datagrams without having to rely on
T C P  f o r end,-to-end retransmission. IP
datagrams may now be carried either in
connected-mode I frames that are acknowledged
at the link layer, or in AX.25 UI frames as
before. The default encapsulation mode is set in
the configuration file. Individual datagrams can
override the default with the type of service
(TOS) bits in the IP header.

An optionall “transparent fragmentation”
facility breaks up large IP datagrams into a
series of AX.25 I frames for transmission over
poor links without a.dded TCP/IP overhead.
This was implemented as a local extension to
the AX.25 protocol.

AX.25 can also be used directly from the
keyboard (i.e., without TCP/IP) for communi-
cation with ordinary packet stations. Because of
the multiplexing :provilded  by the AX.25 Proto-
col ID byte, “conventiona.!“’ AX.25 and
TCPIIPIAX.25  operation can take place simul-
taneously, even between the same pair of sta-
tions.

With minor exceptions, tlhe AX.25 code
tracks the proposed AX.25 Version 2.1
specification currently under review by the
ARRL Digital Committee. The code has been
recently rewritten to adhere to the SDL
diagrams by K3NA as closely as possible.

2.2. IP-on-NET/ROM

A separate paper in these proceedings by
Dan Frank, W9NK,  documents an important
contribution to the package: the ability to pass
IP datagrams through NET/ROM networks.
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This is very much in keeping with a fundamen-
tal principle of internetworking that accounts for
much of TCP/IP’s success: the ability to use
facilities that were designed by others without
internetworking in mind. Dan’s paper discusses
in detail the specific approach taken and its
advantages and disadvantages.

2.3. Packet Driver Support

FTP Software, Inc, has released into the
public domain its interface specification for
packet-oriented hardware device drivers on the
IBM PC. Packet drivers run as Terminate and .
Stay Resident (TSR) modules. They are loaded
independently of the protocol modules that use
it (e.g., the net.exe program that implements
TCP/IP  on the PC), and they can be shared by
multiple protocol modules under a multitasker

. such as DoubleDos or DesqView.

A major practical advantage of the packet
driver approach is that the driver software can
be developed and maintained completely
independently of the protocol code. Since the
drivers no longer need reside in net.exe, the
latter can be much smaller; users need not
waste disk space or memory on drivers for dev-
ices they don’t have.

As the packet driver specification becomes
a de-facto standard, we will be able to use
drivers written by others. TRW had already
contributed its PC-2000 Ethernet card driver
when I added packet driver support to net.exe.
Russ Nelson has since written packet drivers for
the Interlan NI5120 and 3Com 3C501 Ethernet
cards, and Bob Clements, KlBC, has written
one for the Western Digital WD8003 Ethernet
card.

2.4. Other Drivers

Art Goldman, WA3CVG,  and Richard
Bisbey, NG6Q,  have contributed a driver for the
Eagle HDLC interface card. This card, for a
time a popular item at swapmeets, features the
Zilog 8530 chip. They started with an 8530
driver I wrote for the PACCOMM PC-100 and
added many performance enhancements.

2.5. Routing

Al Broscius, N3FCT, has written
automatic routing code for the package. The
protocol is the widely-used “RIP” (Routing
Information Protocol) that has been the infor-
mal standard for several years with Berkeley

UNIX systems. (Berkeley adopted it from
XNS, the Xerox Network System.) RIP belongs
to the class of routing algorithms known vari-
ously as “Bellman-Ford,” “Distance Vector,”
or “ T h e  O l d ARPANET Algorithm.”
NET/ROM’s internal routing algorithm is also
in this class, although it differs in detail from
RIP. Al’s contribution is intended primarily for
Ethernet LANs  where RIP is already common.

2.6. Electronic Mail

The original mail subsystem by Bdale Gar-
bee, N3EUA and myself has been greatly
extended and enhanced by Dave Trulli, NN2Z.
Dave and Bob Gibson, WA3PXX,  have also
each implemented automatic SMTPIWORLI
mail forwarding systems. This is a particularly
useful feature as it allows those running TCP/IP
systems to receive “regular” packet mail
without having to log into a BBS manually.

2.7. Additional Applications and Features

Several useful applications have also been
contributed. Mike Horne, KA7AXD, has writ-
ten a “finger” server. This is a popular ARPA
application that allows one to locate (“put the
finger on”) a person on a remote system. It is
a handy way to make information such as your
telephone number or electronic mail address
available for the convenience of those wishing
to contact you. wo~~has also written an AX.25
“mailbox” that makes the package more useful
with conventional packet stations.

I have added several simple features that
make it easier to run the code at a remote site.
A “remote” server and command allow control
stations to reboot the system with new software
and/or configuration files, and a “forward”
command handles simplex links such as those
found in the collision free backbone node
described later.

3. Internal Changes

In addition to the new externally visible
features that have been described, quite a few
changes have\ been made under the surface.
While perhaps not of direct interest to those
who simply use the package, these changes are
important because they improve performance,
reliability and portability, or make it easier for
programmers to create new applications.
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3.1. Congestion Control

A major contribution to the problem of
avoiding congestion in a highly dynamic TCP/IP
Internet has been made in the past year by Raj
Jain of Digital Equipment Corporation and Van
Jacobsen of Lawrence Berkeley Laboratories.
Van’s suggestions have been widely accepted by
TCP implementers, and they are included in my
TCP code. I h,ave also contributed to this effort
by devising a technique that guarantees the
correctness of the round trip time measure-
ments that TCP uses to set its retransmission
timer.

3.2. Improved CPU Portability

The ordering of bytes within a machine
word, the harclware alignment requirements for
various data types, and the exact positioning of
elements in a C-language structure all depend
on the specific processor and compiler used.
These differences can create portability prob-
lems. For example, early ports of the package to
the Motorola 68000 sometimes generated faults
due to the 68000’s requirement that short and
long integers be at even addresses, something
not required bv the 8088.”

To eliminate these problems, the subrou-
tines that generate and process protocol headers
were rewritten to be completely independent of
these considerations. Each protocol module
contains two conversion routines: one that con-
verts the protocol header from the external
(network) format specified by the protocol stan-
dard to an internal representation, and another
for the inversje  function. External representa-
tions are always kept as a simple byte string,
while the internal representation is usually a C-
language structure. With  th is  and o ther
changes, portability to processors other than the
Intel 8086 family (used in the IBM PC) has
been greatly improved.

The package necessarily contains some
8086 assembler code, despite its inherent non-
portability. The assembler code is in three
categories:

3.2.1. Interrupt Handlers

Since the various device drivers are inter-
rupt driven, an assembler “stub” fields each
interrupt. Each stub establishes a C environ-
ment and then calls a C-language function to do
the “real” work in handling the interrupt.
Although some newer compilers (e.g., Turbo C

and Microsoft C) support special “interrupt”
functions, they appear to be primarily designed
for software interrupt handlers; extra code is
still required (either inline or regular assembly
code) to make them function as hardware inter-
rupt handlers.

3.2.2. DOS Interfaces

Some assembler code is included because
the package uses several DOS system calls that
are not supported by the standard vendor-
supplied C library. While C passes function
arguments on the stack, DOS and BIOS func-
tions accept their parameters in registers; hence
the need for special assembler-language inter
face functions.

3.2.3. Performance Enhancements

Two functions were: written in assembler,
even though they had already been done in C.
One routine computes the ones-complement
sum of a block of 16-bi,t  integers; this is the
ARPA standard checksum algorithm. The other
does fast I/O to port-mapped devices such as
the 3Com 3C501  Ethernet controller. Writing
these routines in assembler improved perfor-
mance through the use of certain 8086 instruc-
tions that are unavailable directlv in C. For
example, although the checksu-m  algorithm
operates on 16-bit integers, the C implementa-
tion uses long (32-bit)  addition to accumulate
the end-around carries. 32 bit arithmetic on the
8086 is relatively expensive because the CPU is
a 16-bit unit. However, in assembler the ADC
(add with carry) instruction makes it possible to
sum each 16-bit word with only two instruc-
tions: a LODSW to fetch the word from
memory and an ADC to add it plus the carry
from the previous addition to the running
checksum. Loop “unwinding” further enhances
performance.

I usually try to avoid assembler code when
possible because of its inherent nonportability.
The problem isn’t so much in porting to
machines completely different from the PC;
device drivers tend to be (necessarily) hardware
dependent, so they have to be rewritten anyway.
The main headache has been nonportability to
the various C compilers on the PC. For exam-
ple, Aztec C provides a macro package that
makes it very easy to write C-callable assembler
routines. These macros automatically “do the
right thing” for each of the 8086’s “billyuns
and billyuns” of memory models. Unfor-
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tunately, a compatible set of macros isn’t avail-
able with the other compilers, so Russ Nelson
contributed quite a bit of time and effort in
porting the assembler routines to Turbo-C.

3.3. Improved  Operating System  Portability

We have tried to improve portability to
operating systems and compilers other than
MS-DOS and Aztec C. We found this to be
much harder than simple CPU portability since
file system, native I/O device support and C
subroutine library dependencies appeared in
widely scattered parts of the package. For
example, while the Apple Macintosh, MS-DOS
and UNIX all provide hierarchical file systems,
the Mac uses the colon (:) to separate path
name components while UNIX uses the slash
(/) and MS-DOS the backslash (\). Although
many of these problems quickly became obvious
once a porting effort had begun, it was unex-
pectedly difficult to identify them in advance. A
typical porting effort therefore goes through
several iterations with the goal of isolating as
much system-dependent code as possible to a
small number of files. We have partially suc-
ceeded in this, but there are still many #ifdefs
(conditional compilation segments) scattered
throughout the code. This should improve as
the package matures further.

Porting has involved the efforts of several
people. Mike1  Matthews, N9DVG, did the ini-
tial ports to the Apple Macintosh, UNIX System
V and the Commodore Amiga. A group in the
San Francisco Bay area including Dewayne Hen-
dricks, WA8DZP  and Andy Cromarty, N6JLJ
has made further improvements and additions
to the Macintosh version, and Bob Hoffman,
N3CVL is now coordinating changes to the
UNIX version. There are undoubtedly others
working on porting efforts of which I am
unaware.

4. Operational  Experience
Most on-air TCP/IP  operation to date con-

sists of local “islands” of activity that cover
metropolitan areas or regions. The facilities
used in each area are diverse; some use IP
switches almost exclusively, others use various
combinations of analog (FM) repeaters, IP
switches, AX.25 digipeaters and NET/ROM
nodes. Most activity uses the 1200 baud AFSK
format, simply because the equipment is so
widely available. The GRAPES group in
Atlanta has pioneered the use of the 56 kbps

modem by Dale Heatherington, WA4DSY,  and
TCP/IP  has been its primary application.

As expected, the Internet approach has
proven highly versatile in adapting to these
heterogeneous environments. Once a system
has been properly configured, its user merely
issues network commands that specify the sys-
tem with which he wishes to communicate; he
need not be continually concerned with the
idiosyncrasies of his local network.

4.1. Collision  Free Networks
The “collision free backbone” technique

described at last year’s conference has been
implemented in an experimental node in north-
ern New Jersey. Our site receives on two UHF
frequencies (431.025 and 440.950 MHz) and
transmits on 221.07 MHz; crossband operation
allows it to receive and transmit simultaneously.
This technique works, although good perfor-
mance still requires good RF links. It is
interesting to hear this site in operation for the
first time; instead of the short bursts of useful
data interspersed with collisions, idle flag
streams and squelch tails one is accustomed to
hearing on regular packet channels, the switch’s
carrier can stay on continuously for minutes at a
time during a file transfer, relaying back-to-back
data packets and acknowledgements.

4.2. Radio/Wire  Internetting
Some experimental linking between

different TCP/IP “islands” has been done with
GTE Telenet’s PC Pursuit service. This inex-
pensive service provides slow speed (1200
baud) asynchronous communication across
Telenet’s X.25 network during nights and week-
ends when excess capacity is available. Since
PC Pursuit provides a (logically transparent)
asynchronous “bit pipe” between its endpoints,
it handles SLIP (Serial Line IP) just fine. A sta-
tion in each area acts as a gateway, relaying
packets between the local packet radio channel
and the telephone line. When more than one
telephone line and modem is available at a
given station, that site can act as a “hub”,
switching datagrams from one phone line to
another as well as between phone line and radio
channel. These experiments clearly demonstrate
an ability to establish an emergency packet
switching network out of ad-hoc combinations
of telephone lines and radio channels.
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4.3. Politics

Certain TCP/IP groups have unfortunately
encountered occasional friction, especially in
areas where TCP/IP activity coexists with con-
ventional AX.25 activity. The complaints seem
to fall into two categories: channel loading and
“garbage characters”, but neither problem is
unique to TCP/IP. Channel loading is a poten-
tial problem wherever interactive traffic com-
petes with file transfer traffic for a low speed
channel. One feature of the TCP/IP package
that alleviates this problem somewhat with
respect to regular AX.25 users is that TCP
“backs off” exponentially whenever it loses a
packet, i.e., it doubles the time between each
successive attempt. This makes TCP far less
aggressive on a heavily loaded channel than a
regular AX.:25 TNC.

Complaints about “garbage characters”
occur when the binary headers of IP or TCP are
seen by stations passively monitoring the chan-
nel with regular TNCs. Such complaints are not
limited to TCP/IP; any high level networking
scheme, including NET/ROM, has similar prob-
lems, as do binary file transfers. Clearly the
correct solution lies with more flexible packet
monitoring lcode in the TNCs,  as enough infor-
mation is available in each AX.25 packet header
(specifically in the PID field) to determine what
higher level protocol is in use.

5. Work in Progress

This section discusses some of the ideas
and goals for the package that are currently
being thought about or implemented. These
cover a variety of items, both hardware and
soft ware.

5.1. Multitasking  operating  system

Net.exe has long been structured as a
“commutator loop” that relies on upcalls and
polling. Hardware interrupts simply transfer
data between devices and queues that are
operated on by routines called from the main
loop. (See my earlier papers for further
details).

Each application presently provides func-
tions (entry points) that are called asynchro-
nously by tlhe transport protocol modules when
external events occur. Applications are not per-
mitted to “busy-wait”, and they must explicitly
save state in “control blocks” so that each call
is interpreted properly. This technique worked

surprisingly well for the existing applications
(the DARPA FTP, Telnet and SMTP protocols)
but it can be clumsy.

With many expressing interest in using the
package as a base for more complex applications
(e.g., multi-user WORLI-style bulletin boards) I
have begun to restructure the package around a
multi-tasking kernel. This will provide a simpler
programming environment more like that of a
conventional multitask:ing system. Net .exe will
remain a single execut,able file containing all of
the applications linked together, and it will still
run under a higher level multitasker such as
Desqview or DoubleDos.

New “synchronous blocking” primitives
more like those in conventional multitasking
operating systems will be provided. For exam-
ple, calls to the network “receive” function will
block, if necessary, until data is available.
When one task blocks, others (if any) will be
run automatically.

The operating system kernel will be non
preemptive. That is, once a task gains control it
runs until it explicitly gives up the processor by
executing a “wait” primitive (e.g., inside the
tcp read subroutine). .4 CPU-intensive task can-
also voluntarily relinquish the processor, allow-
ing other tasks to run. without actually waiting
for an event. Cholosing  a non-preemptive kernel
greatly simplifies the design of the rest of the
system, since “critical sections” are almost
eliminated. (Critical sections are those sections
of a program where a hardware interrupt fol-
lowed by a task switch would leave data struc-
tures in an inconsistent state, usually causing a
system crash. Critical sections can be notori-
ously hard to find, since interrupts are semi-
random external events).

Most multitasking kernels require some
assembler language code for saving and restor-
ing a task’s registers but the non-preemptive
approach combined with a very clever trick sug-
gested by Rob, PElCI-IL allows this to be done
with the standard C library’s setjmp/longjmp
mechanism. This technique makes the resulting
code much more portable, thereby avoiding the
main reason I decided against a multitasking
kernel at the beginning of the project.

5.2. Where Is M,y High Speed Digital?

TCP/IP users feel the limitations of 1200
baud much more acutely than most packeteers,
mainly because of the extreme ease with which
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parallel operations and large file transfers can be
commanded. The problem is much like that of
running UNIX or  some other  powerful
timesharing system on a PC/XT. Even though
a specific program might run just as fast as
under a single-user system like MS-DOS, the
system quickly runs out of gas when the much
more powerful features of the timesharing sys-
tem are exercised.

Dale Heatherington, WA4DSY,  has made
an enormous contribution toward solving the
raw RF link bandwidth problem with his 56
kilobit MSK modem design. I have built
several of these modems, and they certainly
work as advertised. On Ethernet, the TCP/IP
package transfers a file between a pair of IBM
PC/ATs at about 250 kilobits  per second. This
is by no means blazingly fast by Ethernet stan-
dards (the code was written for portability and
flexibility, not maximum speed) but it should
certainly be able to keep a mere 56 kilobit
modem occupied. But Ethernet interfaces are
fairly smart devices designed for fast transfers;
unfortunately there is as yet no readily available
serial interface for the WA4DSY  modem with
the capacity these modems provide! (Those who
saw the original Dayton announcement of the
WA4DSY  modem may remember its subtitle:
“Where, Oh Where Is My High Speed Digi-
tal?“)

The standard asynchronous serial ports
found on personal computers cannot be used
directly with Dale’s modem as it is synchronous
(as is regular 1200 baud packet). The Atlanta
group has had moderate success by modifying
standard TNC-2s to operate at 56k,bps  on the
radio side, but they are still limited to relatively
low data rates (e.g., 19200 bps) between the
TNC and the host computer. This prevents full
use of the modem’s capacity.

It is better to eliminate the TNC entirely
and use an interface card on the PC to generate
HDLC that can be fed directly to the modem.
Several HDLC cards already exist, including the
HAPN 8273 card, the PACCOMM PC-100, the
DRSI PCPA and the aforementioned Eagle
card. However, none of these cards work well
at high speeds, because the PC’s DMA (direct
memory access) facility is insufficient to support
these cards without additional hardware. Inter-
rupt driven transfers are entirely appropriate at
lower speeds, but at 56 kbps a byte arrives every
142 microseconds; that is not much time on a
4.77 Mhz 8088 to save state, process an inter-

rupt and return. Making matters much worse 1s
that much PC system code disables interrupts
for relatively long intervals (consider disk
transfers), effectively “starving” a hungry high
speed modem.

It is possible to make one of these simple
cards operate in half duplex at 56 kbps -- after a
fashion. I am presently writing a driver for the
DRSI PCPA that will run at 56 kbps, but it
requires that interrupts be inhibited during any
active packet transfer. Packet transmission and
reception are both done with “busy waits”; the
transmit routine is invoked whenever a packet is
to be sent while the receive routine is invoked
by the appearance of a receive carrier. (This
has an unfortun ate side effect: open the demo-
dulator squelch and the system “hangs” until
the squelch closes).

The proper long-term solution to the
“Where Is My High Speed Digital” problem lies
with hardware: a special “slave” processor
board with sufficient intelligence, buffering and
autonomy to handle several seconds’ worth of
packets without immediate assistance from the
host processor. Mike Chepponis, K3MC, has
been working on the design of such a board,
and his paper on this subject appears in these
proceedings. His design appears sufficient for
speeds considerably faster than 56 kbps as well.

5.3. Routing
Saying that automatic routing is a “fertile

research area” in the professional computer sci-
ence community is like saying that Antarctica
has a lot of ice. Much practical experience has
been gained from many commercial, military
and research computer networks that can now
be applied to amateur packet radio, and I would
like to offer some thoughts on how the static,
manually controlled routing in the TCP/IP pack-
age might be replaced.

As mentioned in the section on RIP,
many existing networks, including NET/ROM,
use a routing algorithm that is variously known
as “Bellman-Ford”, “Distance Vector” or
“The Old ARPANET Algorithm”. Each node
broadcasts its routing table, the entries of which
list each destination in the network and that
node’s current estimate of the “cost” to that
destination. This algorithm is known to have
many problems in practice, particularly with sus-
ceptibility to routing loops when links fail.
Radio creates a few problems of its own, includ-
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ing particularly flakey links and non-reciprocal
paths.

A different algorithm, known variously as
“Dijkstra’s algorithm,” “Link State Routing,”
“SPF” or “The New ARPANET Algorithm”
may offer an (alternative. In link state routing,
each node broadcasts to all other nodes the
status of each of its local links. Each node
receives the broadcasts of the other nodes and
constructs a complete map of the network from
which it may make local routing decisions. The
broadcast mechanism is in fact implemented
with “intelligent flooding”, where an incoming
packet is relayed by a node to each of its neigh-
bors only if that packet hasn’t been previously
seen. (This mechanism has other uses, such as
the provision of a user broadcast mechanism).

The only special problem radio presents to
this algorithm is how to determine whether a
link is “up” or “down”. Just having an active
AX.25 connection isn’t enough; it might have
been idle for several hours, so there’s no way to
know if it’s still good or not. Continually
transmitting link test packets (“pinging”) is not
a particularly good idea, for fairly obvious rea-
sons. Here an idea from the DARPA packet
radio projects should be very helpful. Each
node only has to broadcast a periodic report list-
ing the stations it has heard in the last N
minutes, with a count of the number of packets
seen from each. Each station mentioned in the
report can then compare that number against
the number it actually transmitted, gauging the
reliability of that particular path. If the percen-
tage is high enough, it can consider the link to

be “up”; otherwise it ,is  “down”. Or inter-
mediate figures representing link “quality”
could be used. Clearl,y there is plenty of
interesting and useful work that can be done
here.

6. Concluding  Thoughts

Bringing TCP/IP to amateur radio has
been a very time-consuming task, but its accep-
tance has been a most gratifying reward. Many
challenges still remain, and not all of them are
technical. We have: learned and demonstrated
many things so far. We have proven that
TCP/IP  is indeed a practical and versatile foun-
dation for the more advanced amateur packet
applications, but we have also learned that many
other packeteers do not as yet feel that they
need its capabilities. There now seems to be a
growing awareness within amateur packet radio
that, at present, no one approach satisfies
everyone’s needs and tlhat  there is plenty of
room for parallel, complementary approaches.
As more powerful hardware becomes popular,
though, I do believe that the “computer net-
working” phi1osoph.y as demonstrated by the
TCP/IP  project will gradually replace the more
traditional “terminal networking” systems we
have now.

The KA9Q Internet package continues to
be available on the same terms: it may be freely
copied, used and modified for amateur or other
noncommercial use. Commercial use of any
part of the package requires permission of the
appropriate author or authors.


