ESTELLE: A FORMAL DESCRIPTION TECHNIQUE
FOR COMMUNICATION PROTOCOLS

Michel Barbeau, VE2BPM
3360 Marechal, app. 305

Montreal,

Canada

H3T 1M9

1. Introduction

A communication protocol is a set of rules for data
exchange between entities of a computer network. A
communication protocol may be defined, or specified,
by text written in a natural language such as english.
Specifications of this type are sometimes ambiguous and
imprecise, mainly because today’s communication pro-
tocols are very complex. Each reader makes his own
assumptions and interpretations of the unclear aspects.
The corresponding implementations, or concrete realiza-
tions. of the protocol, made by different groups of people,
may have incompatible behaviours under certain circum-
stances and therefore they cannot always work together
properly. In order to specify unambiguously, clearly and
concisely communication protocols, what are called, For-
mal Description Techniques (FDT) have been developed.

Estelle [1]is a FDT developed by 1S0 (International
Standard Organization). It is based on an Extended Fi-
nite State Machine model (EFSM). A finite state ma-
chine is a simple abstract device which has states and
transitions labelled by input and output symbols. A
state transition table is one of the possible ways to rep-
resent textually a FSM. FSM’s are frequently used to
model the control flow of systems. Communication soft-
wares, such as data link protocols, have usually a compo-
nent that can be represented by FSM's. As an example
see the state transition tables of the AX.25 link-layer
nrotocol in appendix D of [2]. Protocols have also data
flow aspects involving interaction parameters, different
kinds of variables and data operations. The data flow
aspects are hard to represent using only FSM’s. Estelle
extend the idea of FSM in a sense that variables, ac-
tions and predicates, operating on those variables, are
added to this basic model. The syntax of Estelle has
been defined from the syntax of the programming lan-
guage Pascal. New elements have been added in or-
der to make easier the definition of aspects particular to
communication protocols. In Estelle can be expressed
both the control flow aspect, using FSM's, and the data
flow aspect, using Pascal’s elements, of a communication
protocol. Protocol specifications written in the formal
language Estelle are said formal with respect to infor-
mal specifications written in a natural language such as
English.

Section two introduces the alternating bit, a simple
data transfer communication protocol. Then, in sect ion
three, the alternating bit 1s used to present the FDT
Estelle for the specification of communication protocols.

2. The Alternating Bit Protocol

The alternating bit is a very simple data transfer
protocol which can be used, as the AX.243 packet-radio
protocol [2], in the data link layer of the ISO reference
model. This section gives a short introduction to the
alternating bit.

The protocol comprises a mechanism giving the ca-
pability to recover data losses during the data transfer.
It prevents also the transmitter from overloading the
receiver with data. Two kinds of data blocks, or Pro-
tocol Data Units (PDU’s), are exchanged between enti-
ties that are using the rules of the alternating bit. The
first kind of PD U is named DT. A DT block is com-
posed of two fields: a sequence number field and a user’s
data field. The second kind of PDU is named AK. AK
blocks are used to acknowledge the successful transfer of
DT blocks from the transmitter to the receiver. An AK
PDU contains the sequence number of an acknowledged
DT PDU. Values of sequence numbers alternate between
zero and one. The interaction with the users of the
protocol is represented by the messages SEND _request,
RECEIVE_request and RECEIVE_response. The inter-
action RECEIVE_request has no parameter but the mes-
sages SEND_request and RECEIVE_response have both
a parameter for user’s data.

Figure 1 shows a typical dialogue between two enti-
ties that are using the alternating bit. The transmitter
initiates the dialogue by a transmission request (1). The
protocol generates a DT, numbered zero. This DT is
correctly received by the peer entity (2). The user’s re-
quest for data is satisfied by a RECEIVE_response which
conveys the value took from the data field of the DT
PDU. An acknowledgement is also sent to the transmit-
ter. Only one DT PDU may be transmitted at once. Its
successful reception must be acknowledged before trans-
mit ting more data.

Losses of PDU’s are recovered. A second interac-
tion SEND-request (3) generates a DT PDU numbered
one. Its corresponding acknowledgement is lost during
the transfer (4). After a timeout period the emitter re-
transmits the same DT block (5). Its reception is now

TRANSMITTER RECEIVER

SEND_req

oro
|©
RECEIVE- req
= —
RECEIVE_ resg
SEND_req @
oT1
AK1
@

RECEIVE-req

RECEIVE- resp

RETRANSMISSION
RECEIVE-req

@ D11
- fe—""
©

RECEIVE-resp
SEND_req
\’\m‘
© ot
RETRANSMISSION
=~
RECEIVE- req
Ax0
RECEIVE_resp
Fig. 1 Data transfer with the alternating

bit

acknowledged (6). In the case where the DT block it-
sdf is lost (7) retransmission aso occurs after a timeout
period (8).

3. The Formal Specification of a Protocol

The language Edtelle is used to define formaly the
behaviour to which, implementations of a communica-
tion protocol, might conform. However, a certain level
of abstraction is kept with respect to the specific charac-
teristics of some particular implementation. A protocol
description in Estelle is generally composed of two main
parts:

e The first part contains descriptions of channel
types through which the protocol will exchange
messages With. its environment (i.e. the users and
the communication services provided by the layer
beneath). Channels are defined in terms of the
messages that can be sent by each entity com-
municating through it. Messages can have pa-
rameters, therefore they are defined along with
their parameter identifiers and their respective
data types.

e The protocol description itself is structured into
one or several cooperating modules, defined in
the second part of the specification. Each mod-
ule corresponds to an EFSM (i.e. a FSM capa-
ble of having memory). A module may contain
data type, variable and procedure declarations.
Each module has interaction points, each one x.
associated to a channel type. Communications
with other modules and the protocol’s environ-
ment take place at those interaction points. The
control and data flow aspect of a module are es-
sentially described by a group of transitions. A
complete module specification consists of a mod-
ule header, where its interaction: points are de-
fined, and generaly gne module body, where data
flow and control aspects are defined.

The syntax of the Eselle language is essentialy an
extension of the syntax of the Pascal language. New syn-
tactic elements have been added to provide the facilities
to define aspects which are specific to communication
protocols. Appendix A shows the formal specification in
Estelle of the aternating bit protocol, presented in sec-
tion 2. The following is a discussion of this specification.
3.1 Channeds and Interactions

At the beginning of the specification is declared the
Pascal record Ndata_type describing the structure of the
PDU kinds exchanged by the protocol implementations.
The alternating bit uses two kinds of PDU. The fields
Id identifies the PDU’s. For a DT PDU the fields Data
snd Seq are used. For an AK the field Seq only is used.
This definition does not take into account the encoding
of the PDU’s in terms of bits and bytes. This infor-
mation would be given in an informal specification (i.e.
using a natural language). Therefore, formal and infor-
mal techniques complete each other.

Channel statements introduce the types of inter=
action exchanged by the involved entities. Commu-
nication between the user of the alternating bit and
the protocol will take place over a channel of type
U_access-point and over a channel of type N_access_point
between the protocol and the layer beneath (i.e. the
physical layer). Over a channel of type U.access_point

the user can send the interactions SEND_request and
RECEIVE request. The protocol may, over the same
channel, send the message RECEIVE_response. Names
and data types of interaction parameters are specified
in parentheses following each message identifier. Inter-
actions such as SEND_request, RECEIVE request and
RECEIVE_response are generally called service primi-
tives. The channel N_access_point can be interpreted in
a similar fashion. Those channel declarations do not sug-
gest any concrete realization. Services primitives may be
implemented as procedure calls, subroutines linkages or
int erprocess communication.

3.2 Modules

Modules are defined using the module and bodu
statements. A module statement is used to define what
is called t h e module header. The header names the
points of interaction with the module’s environment,
the channel type used at each of these points and the
role attributed to the module. T he module header
Alternating_bit_type has two interaction points named U/
and N. The roles of the module are named: provider
with respect to [/ and user with respect to N.

To each header type, are associated one or several
module bodies. This way, to the same external struc-
ture may correspond different internal behaviours. The
definition of each of these bodies begins with the key-
word body. The specification of appendix A i s struc-
tured into a single module. To the module header
A lternating_bit_type corresponds a single module body
identified Alternating-bit_body. Generally specifications
of complex protocols are structured into many modules
and those modules may themselves embed submodule
declarations.

The skeleton of a module bodyv is a finite state ma-
chine. Because it is difficult and generally impossible to
specify a fairly complex protocol using only FSM’s, ele-
ments of the Pascal language have been added to extend
this basic concept. Usually a module body comprises
three consecutive major sections: a declaration part, an
initialization part and a transition part.

Any kind of declaration that could be found in Pas-
cal programs may be used in an Estelle specification.
The body Alternating_bit_body contains declarations of
constants, data types, variables, procedures and func-
tions.

The representation of the data type Buffer_type is
undefined. Instead the definition has been replaced by
the symbol ™. ..". The body of some procedures and func-
tions is defined as ezternal or primitive. Those undefined
aspects of the specification are left to the protocol 1m-

plementers. They will choose themselves the more suit-
able representation and the algorithms to manage data
buffers.

The state of a module, during its execution, is char-
acterized by the values of its variables. One of these, the
variable state, plays a key function. It will save the ma-
jor state name (i.e. either ACK_WAIT or ESTAB in
this case). This variable corresponds to the FSM com-
ponent of the module. The other variables save sequence
numbers and data elements, they are called context vari-
ables.

The initial state of a module is defined in the initial-
ization part. First, this part specifies the initial major
state name using the statement, {o. Then, assignment
statements give initial values to the context variables.

3.3 Transitions

The transitions define the potential state changes
of a module. The module Aliernating_bii_body has five
transition types. The first three are related to data
transmission. The last two handle the reception of data
Each transition has a begin-end bloc, similar to a Pas-
cal procedure. This bloc is preceded by a sequence of
clauses specific to Estelle. The clauses from and to ex-
press the major state change made when the transition
is executed. The firing of the transition depends of the
current major state and also on the truth value of a
predicate specified in the provided clause. This predi-
cate contains references to context variables. The firing
may also depend on the arrival of an input interaction
which is selected by the clause when, otherwise the tran-
sition is called spontaneous.

In brief, a module makes a transition if one of its
transitions is enabled. A transition is enabled if the
conditions jointly specified by the clauses from, when
and provided are satisfied. The transition thru a state,
first specified by the clause 1o then by the new values
assigned to the context variables in the begin-end bloc,
will be made. Any Pascal statement may be used in
the begin- end bloc. Moreover, output messages can be
generated using output statements.

A message sent by an output interaction is put in
a queue associated to its receiver. The receiver will re-
trieve the message from the queue when he will be able
to process it. With the statement stateset may be de-
clared sets of major state names. References to these
state sets can be made in the from clauses.

Estelle contains also statements for dynamic man-

agement of modules instances (i.e. creation, destruction,
etc.). Moreover, Estelle comprises to whole standard

3

Pascal language. For a complete coverageof Estelle see

[1].
4. Conclusion

FDT's are the first step toward the development
of well defined and reliable communication softwares.
FDT’'s provide clear and precise definition of commu-
nication protocols to implementers. Estelle is a FDT
developed by 1S0 that is expected to be extensively used
in the future.

References

11 1SO/TC 97/SC 21, Estelle - A Formal Descrip-
tion Technique Based on an Extended State Transdion

Model, DP 9074, 1986.

2] FOX L. Terry, AX.25 Amateur Packet- Radio
Lini-Layer Protocol, ARRL, 1984.

Appendix A: An Example Protocol Specification

This specification has been extracted from reference
"1. Comments are placed, as in Pascal, in curly brackets.
Note that this protocol definition may contain‘deadlocks.

specification Altbit;

type
U-Datartype = { user data }
Seqg-type = 0..1 ; { sequence number range }
Id-type = (DT, AK);
Ndata.type = record
Id : Id-type; { type of message }
Data : U-Data-type; { user data }
Sey : Seq-type; { sequence number }
end;

{ Channel definitions }
channel U_access_point(User,Provider);
by User:
SEND-request (Udata :
RECEIVE_request;
by Provider:
RECEIVE_response(Udata : U-Data-type);

U-Data-type);

channel N_access_point(User,Provider);
by User:
DATA request(Ndata : Ndata_type);
by Provider:
DATA xesponse(Ndata : Ndata-type);

{ Module header definition }
module Alternating-bit-type process,
ip { interaction point list }
U : U_access_point(Provider) common queue;
N : N.access_point(User) individual queue
end.

{ Module body definition }
body Alternating_bit_body for Alternating-bit-type;

const
Retran_time = ...;
{ Retransmission time in seconds
(defined by implementer) }

type
Msg_type = record
Msgdata : U-Data-type;
Msgseq : Seq-type
end,

Buffer-type="....

var
Send-buffer, Recv_buffer : Buffer-type;
Sendseq, Recvseq : Seg-type;
P, Q : Msg-type;
B : Ndatatype

state ACK-WAIT, ESTAB;

stateset
EITHER = [ACK-WAIT, ESTABJ;

procedure Copy(
var To_Data:U_Data_type; From.data:U_Data_type);
external;
{ procedure provided by implementer:
copy a user data variable }

procedure Empty(var Data:U_Data_type);
primitive;

{ procedure provided by implementer:
initialize a variable holding user data

to the value no user data }

procedure Formatdata(Msg:Msg-type; var B:Ndata.type);
begin
B.ld := DT,
copy(B.Data, Msg.Msgdata);
B.Seq := Msg.Msgseq;
end;

procedure Format_ack(Msg:Msg_type; var B:Ndata_type);

begin

B.Id := AK;

B.Seq := Msg.Msgseq;
end,

procedure Empty buf(var Buf:Buffer_type);
primitive;

{ procedure provided by implementer:

set a buffer to empty }

procedure Store(var Buf:Buffer_type; Msg:Msg_type);
primitive;

{ procedure provided by implementer:

store a message into a buffer_type variable such that the

messages can be retrieved or removed in a FIFO manner }

procedure Remove(var Buf:Buffer _type);
primutive;

{ procedure provided by implementer:
remove the first message }

function Retrieve(Buf:Buffer_type):Msg_type;
prondive:

{ fu nc tion provided by implemen ter:

retrieve the first message and return it;

the message is not removed }

function buffer _empty(Buf:Buffer_type):boolean;
primdive:

{ function provided by implementer:

check if a buffer contains a message }

procedure Inc_send_seq;
begim

Send _seq := (Send_seq + 1) mod 2
end,

procedure Inc_recv_seq;
begin

Recvseq
end,

:= (Recvseq + 1) mod 2

{ initialization-part }
imaitialize
to ESTAB { initialize major state variable to ESTAB }
begin
{ initialize context variables }
Send_seq := 0;
Recv_seq := 0;
Empty_buf(Send_buffer);
Empty_buf(Recv_buffer);
end,

{ Transition part }

{ Sending data }

trans

from ESTAB to ACK.WAIT

when U.Send._request

begin
copy(P.Msgdata,Udata);
P. M sgseq : = Send _seq;
Store(Send_buffer,P);
Format .data(P,B);
output N.DATA request(B);

end.

trans
from ACK WAIT to ACK _WAIT
delay (Retran_time) { timeout }
2«9 m
P := Retrieve(Send -buffer);
Format -data(P,B);
output N .DATA request(B);
end;

trans
from ACK_WAIT to ESTA:B
when N.DATA _response
provided (Ndata.ld = AK) and (Ndata.Seq = Send -seq)
begin
{ remove acknowledged message }
Remove(Send-bufler);
Inc_send_seq
end;

{ Receiving data }
irans
from EITHER to same
when N.DATA response
provided Ndata.ld = DT
begin
copy(Q.Msgdata, Ndata.Data);
Q.Msgseq := Ndata.Seq;
Format.ack(Q,B);
output N.DATA _request (B);
if Ndata.Seq = Recv_seq then
begin
Store(Recv_buffer,Q);
Inc.recv_seq
end
end,

trans

from EITHER to same

when U.RECEIVE_request

provided not buffer-empty(Recv_buffer)

begin
{ retrieve received message }
Q := Retrieve(Recv_buffer);
output U.RECEIVE _response(Q.Msodata),
{ remove message from receiving buffer }
Remove(Recv_buffer)

end;

end; { of module body }

end. { of specification }

