
ESTELLE: A FORMAL DESCRIPTION TECHNIQUE
FOR COMMUNICATION PROTOCOLS

Michel Barbeau, VEZBPM
3360 Marechal, app. 305

Montreal, Canada
H3T 1%l9

1. Lntroduc.tion

A communication protocol is a set of rules for data
exchange between entities of a computer network. A
communication protocol may be defined, or specified,
by text written in a natural language such as english.
Specifications of this type are sometimes ambiguous and
imprecise, mainly because today’s communication pro-
tocols are very complex. Each reader makes his own
assumptions and interpretations of the unclear aspects.
The corresponding implementations, or concrete realiza-
tions. of the protocol, made by different groups of people,
may have incompatible behaviours under certain circum-
stances and therefore they cannot always work together
properly. In order to specify unambiguously, clearly and
concisely communication protocols, what are called, For-
mal Description Techniques (FDT) have been developed.

Estelle [l] is a FDT developed by IS0 (International
Standard Organization). It is based on an Extended Fi-
nite State Machine model (EFSM). A finite state ma-
chine is a simple abstract device which has states and
transitions labelled by input and output symbols. A
st,ate transition table is one of the possible ways to rep-
resent textually a FSM. FSM’s are frequently used to
model the control flow of systems. (:ommunication soft-
wares. such as data link protocols, have usually a compo-

nent that can be represented by FSM’s. As an example
see the state transition tables of the A X . 2 5 link-layer
protocol in appendix D of 1~1. Protocols have also data
flow aspects involving interaction parameters, different
kinds of variables and data operations. The data flow
aspects are hard to represent using only FSM’s. Estelle
extend the idea of FSM in a sense that variables, ac-
tions and predicates, operating on those variables, are
added to this basic model. The syntax of Estelle has
been defined from the syntax of the programming lan-
guage Pascal. New elements have b e e n added in or-
der to make easier the definition of aspects particular to
communication protocols. In Estelle can be expressed
both the control flow aspect,, using FSM’s, and the data
flow aspect, using Pascal’s elements, of a communication
protocol. Protocol specifications written in the formal
language Estelle are said formal with respect to infor-
mal specifications written in a natural language such as
English.

Section two introduces the alternating bit, a simple
data transfer communication protocol. Then, in sect ion
three, the alternating bit is used to present the FDT
Estelle for th,e specification of communication protocols.

2. The Alternating Bit IProtocol

The alternating bit is a very simple data transfer
protocol which can be used, as the AX.243 packet-radio
protocol [2], in the data link layer of the IS0 reference
model. This section gives a s h o r t introduction to the
alternating bit.

The probtocol comprises1 a mechanism giving the ca-
pability to recover data losses during the data transfer.
It prevents also the transrnitter from overloading the
receiver with data. Two kinds of data blocks, or F’ro-
tocol Data IJnits (PDU’s), ‘are exchanged between enti-
ties that are using the rules of the alternating bit. The
first kind of P D U is named DT. A DT block is com-
posed of two fields: a sequence number field and a usler’s
data field. The second kind of PDU is named AK. AK
blocks are used to acknowledge the successful transfer of
DT blocks from the transmitter to the receiver. An AK
PDU contains the sequence number of an acknowledged
DT PDLJ. V 1<2 ues of sequence numbers alternate between
zero and one. The interaction with the users of the
protocol is represented bv the messages SEND-request,
RECEIVE-request and REC’EIVEresponse. The inter-
a&on RECEIVE-request has no parameter but the mes-
sages SEND-request and RECEIVE-response have both
a parameter for user’s data.

Figure 1 shows a typical dialogue between two enti-
ties that are using the alternating bit. The transmitter
initiates the dialogue by a transmission request (1). The
protoc.01 generates a DT, numbered zero. This DT is
correctly received by the peer entity (2). The user’s re-
quest for data is satisfied by a RECEIVE-response which
conveys the value took from the data field of the DT
PDU. An acknowledgement is also sent to the transmit-
ter. Only one DT PDU may be transmitted at once. Its
successful reception must be acknowledged before trans-
mi t ting more data.

.1

Losses of PDU's are recovered. A second interac-
tion SEND-request (3) generates a DT PDU numbered
one. Its corresponding acknowledgement is lost during
the transfer (4). After a timeout period the emitter re-
transmits the same DT block (5). Its reception is now

TRRNSMIITER

Fig.

RETRANSMISSION

RETRANSMISSION

RECEIDER

0
RECEIVE- req

r

RECEIVE-rest

RECEIVE-req

RECEIVE- resp

RECEIVE-req

RECEIVE-resp

RECEIVE- req

RECEI VE-resp

1 Data transfer with the alternating
. .
bit

acknowledged (6). In the case where the DT block it-
self is lost (7) retransmission also occurs after a timeout
period (8).

3. The Formal Specification of a Protocol

The language Estelle is used to define formally the
behaviour to which, implementations of a communica-
tion protocol, might conform. However, a certain level
ofabstract.ion is kept with respect to the specific charac-
teristics of some particular implementation. A protocol
description in Estelle is generally composed of t#wo main
parts:

l The first part contains descriptions of channel
types through which the protocol will exchange
messages with. its environment (i.e. the users and
the communication services provided by the layer
beneath). Channels are defined in terms of the
messages that can be sent by each entity corn--

municating through it. Messages can have pa-
rameters, therefore they are defined along with

their parameter identifiers and their respective
data types.

l The protocol description itself is structured into
one or several cooperating modules, defined in
the second part of the specification. Each mod-
ule corresponds to an EFSM (i.e. a FSM capa-
ble of having memory). A module may contain
data type, variable and procedure declarations.
Each ;Ilodule has interaction points, each one is

associated to a channel type. C’onlmunications
with other modules and the protocol’s environ-
ment take place at those interaction points. The
control and data flow aspect of a module are es-
sentially described by a group of transitions. A
complete module specification consists of a mod-
ule header, where its interactionl points are de-
fined, and generally qne module body, where data
flow and control aspects are defined.

The syntax of the Estelle language is essentially an
f?xtension of the syntax of the Pasc.al language. New syn-
tactic elements have been added to provide the facilities
to define aspects which are specific to communication
protocols. Appendix A shows the formal specification in
Estelle of th-e alternating bit protocol, presented in sec-
tion 2. The following is a discussion of this specification.

3.1 Channels and Interactions

At the beginning of the specification is declared the
Pascal record Ndata-iype describing the structure of the
PDU kinds exchanged by the protocol implementations.
The alternating bit uses two kinds of PDU. The fields
Id identifies the PDU’s. For a DT PDU the fields Data
snd Seq are used. For an AK the field Seq only is used.
This definition does not take into account the encoding
of the PDU’s in terms of bits and bytes. This infor-
mation would be given in an informal specification (i.e.
using a natural language). Therefore, formal and infor-
mal techniques complete each other.

Channel statements introduce the types of inter=
action exchanged by the involved entities. Commu-
nication between the user of the alternating bit and
the protocol will take place over a channel of type
IJ-access-point and over a channel of type N-a.ccess-poini
between the protocol and the layer beneath (i.e. the
physical layer). Over a channel of type U-access-podc

the user can send the interactions SEND-request and
R E CEI VE-7acques 1. The protocol may, over the same
Channel, send the message RECEIVE-response. N a m e s
and data types of interaction parameters are specified
in parentheses following each message identifier. Inter-
actions such as SEND-request, RECEIVE-request and
REC’EIVE-response are generally called service primi-
tives. The channel N-access-point can be interpreted in
a similar fashion. Those channel declarations do not sug-
gest any concrete realization. Services primitives may be
irqhnented as procedure calls, subroutines linkages or
int erprocess communication.

3.2 Modules

M o d u l e s a r e d e f i n e d u s i n g t h e n?od& and bo&.
statenlents. A module statement is used to define what
is called t h e module header. The header names the
points of interact ion with the module’s environment ,
the channel type used at each of these points and the
r o l e a t t r i b u t e d t o t h e m o d u l e . T h e module header
-~(?~~~aiing_bit-iype has two int,eraction points named U
and JV. The roles of the module are named: provider
with respect to lJ and USCT with respect to N.

To each header type, are associated one or several
module bodies. This way, to the same external struc-
ture may correspond different internal behaviours. The
definition of each of these bodies begins with the key-
word body. The specification of appendix A i s struc-
tured into a single module. To the module header
A hna,ting-bit-type corresponds a single module body
identified Alternating-bit-body. Generally specifications
of complex protocols are structured into many modules
and those modules may themselves embed submodule
declarations.

The skeleton of a module bodv is a finite state ma-
chine. Because it is difficult and ginerally impossible to
specify a fairly complex protocol using only FSM’s, ele-
ments of the Pascal language have been added to extend
this basic concept. Usually a module body comprises
three consecutive major sections: a declaration part, an
initialization part and a transition part.

Any kind of declaration that could be found in Pas-
cal programs may be used in an Estelle specification.
The body Alternating-bit-body contains declarations of
constant;, data types, variables, procedures and func-
tions.

The representation of the data type Buffer-type is
undef ined. Instead the definition has been replaced by
the s!-mbol ” . ..‘I The bodv of some procedures and func-
tions is defined as ezkmai or pr?mitzve. Those undefined
aspects of the specification are left to the protocol im-

pleruenters. They will choose themselves the more suit-
able representation and the algorithms to manage data
buffers.

The state elf a module, during its execution, is char-
acterized by the values of its variables. One of these, the
variable state, plays a key function. It will save the ma-
jor s tate name (i .e . ei ther AC’KWAl[T or ESTAB in
this case). This variable corresponds to the FSM com-
ponent of the module. The other variables save sequence
numbers and data elements, they are called context vari-
ables.

The initial state of a module is defined in the imtial-

izat,ion part . First, this part specifies the initial major
state name using the s ta tement , 20. Then, ass ignment
statements give init,ial values to the context. variables.

3.3 TransitioI.ls

The transitions define the potential state changes
of a module. The module Al!ernaiing-bzt-body has five
transition types. The first three are related to data
transmission. The last two handle the reception of data.

Each transition has a begin-end bloc, similar to a Pas-
cal procedure. This bloc is preceded by a sequence of
clauses specific to Estelle. The clauses from and to ex-
press the major state change made when the transition
is executed. The firing df the transition depends of thle
current major state and also1 on the truth value of ;a
predicate specified in the provided clause. This predi-
cate contains references to context variables. The firing
may also depend on the arrival of an input interaction
which is selected by the clause when, otherwise the tran-
sition is called spontaneous.

In brief, a module makes a transition if one of its
transitions is enabled. A transition is enabled if the
conditions jointly specified bly the clauses fTom, when
and provided are satisfied. The transition thru a state,
first specified bv the clause t!o then by the new values
assigned to thecontext variables in the begin-end bloc,
will be made. Any Pascal statement may be used in
the begin- end bloc. Moreovelc, output messages can be
generated using output statements.

A message sent by an output interaction is put inc
a queue associated to its receiver. The receiver will re-
trieve the message from the queue when he will be able
to process it. With the statement sta.teset may be de-c
clared sets of major state names. References to tht>se
state sets can be made in the from clauses.

Estelle contains also statements for dynamic man-
agement of modules instances (i.e. creation, destruction,.
etc.). Moreover, Estelle comprises to whole standard

Pascal

PI .
language. For a complete coverage of Estelle see

4. Conclusion

FDT’s are the first step toward the development
of well defined and reliable communication softwares.
FDT’s provide clear and precise definition of commu-
nication protocols to implementers. Estelle is a FDT
developed by IS0 that is expected to be extensively used
in the future.

References

i?] FOX L. Terry, -4 dx. 25 A vba.teur Pa&i- Ro.dio
LUG.-Loye~ Proiocol, ARRL, 1984.

{ Module header definition }
mod& Alternating-bit-type process;

ip { interaction point list }
U : U-access-point.(Provider) common queue;
N : N-access-point(User) individual queue

U-d:

{ Module body definition }
todp Alt.ernating-bit-body for Alternating-bit-type;

con St
Retrantime = ,..;
{ Retransmission time in seconds
(defined by implementer) }

t YPC
!bg-type = TeCOTd

Msgdata : U-Data-type;

Msgseq : Se+type
t’71 tl;

Buffer-type =

Appendix A: An Example Protocol Specification

This specification has been extracted from reference
’ 1‘. Comments are placed, as in Pascal, in curly brackets.
N&e that this protocol definition may contain‘deadlocks.

IJOT

Send-buffer, Recv-buffer : Buffer-type;
Sendseq, Recvseq : Seq-type;
P, Q : Msg-type;
B : Ndata-type;

spkjkation Altbit;
state ACK-WAIT, ESTAB;

U-Data-type = { user data)
Seq-type = O..l ; { sequence number range }
Id-type = (DT, AK);
Ndata-type = reco73d

Id : Id-type; { type of message }
Data : U-Data-type; { user data)
Sey : Seq-type; { sequence number }

end;

{ Channel definitions }
channel U-access-point(User,Provider);

by User:
SEND-request (Udata : U-Data-type);
REC’EIVErequest;

by Provider:
RECEIVE-response(Udata : U-Data-type);

channel N-access-point(User,Provider);
by User:

DATA-request(Ndata : Ndata-type);
by Provider:

DATAJesponse(Ndata : Ndata-type);

stateset
EITHER = [ACK-WAIT, ESTAB];

procedure Copy(
VU.T To-Data:U-Data-type; From-data:U-Data-type);

external;
{ procedure provided by implementer:
copy a user data variable)

procedure Empty(var Data:U-Data-type);
primitive;
{ procedure provided by implementer:
initialize a variable holding user data
to the value no user data }

procedure Formatdata(Msg:Msg-type; vaT B:Ndata-type);
begin

B.Id := DT;
copy(B.Data, Msg.Msgdata);
B.Seq := Msg.Msgseq;

end;

procedure Formatack(Msg:Msg-type; var B:Ndata-type);
begin.

B.Id := AK;
B.Seq := Msg.Msgseq;

procedure Empty-buf(var Buf:Buffer-type);
primitive;
{ procedure provided by implementer:
set a buffer to empty }

pl*oceduw Store(var BuC:Buffer-type; Msg:Msg-type);
pi%itiw;
{ procedure provided by implementer:
store a message into a buffer-type variable such that the
messages can be retrieved or removed in a FIFQ manner }

proceduwe Remove(va.r Buf:Buffer -type);
p~~imitive;
{ procedure provided by implementer:
remove the first message }

function Retrieve(But Buffer-type):Msg-type;
7,7.17!1 / 117’C1
{ fu Ilc t ion provided by iwpkrtwxl kr:

retrieve the first message and return it;
the message is not removed }

funciron buffer-empty(Buf:Buffer-type):boolean;
p)73 711 hW*\

(function provided by implementer:
check if a buffer contains a message }

pT.occduw Inc-sendseq;
beg 7 11

Send -seq := (Send-seq + 1) mod 2
uid;

procEdure Inc-recvsey;
begm

R e c v s e q : = (Recvseq + 1) mod 2
end;

{ init.ialization-part }
mimke
to ESTAB { initialize major state variable to ESTAB }
begzn

{ initialize context variables }
Sendseq := 0;
Recvseq := 0;
Empty-buf(Send-buffer);
Empty-buf(Recv-buffer);

end;

{ Transition. part }
{ Sending data }

bans
f rom ESTAB to ACK-WAIT
vhm IJ.Send-request
btgm

c(,pv(P.Msgdata,Irdata);<
P. 11 sgseq : = Send seal;

Store(Send-buffer,P);

Format -data(P,B);
(jutput N.DA’I’AJ~~~~~~~I:B);

End:

f 7.0 71 s

fmm AC’K S\‘AIT to ACX -WAIT

tl&~g /Retrart-time) { theout }
bt 9 1 Tlc

p :z Retrieve(Send -buflYer);

Format -data(P,B);
OIQU~ X .DATAsequest(B);

end;

bans
from ACXSVAIT to ESTA:B
when N.DATA-response
prowded (Ndata.Id = AK) and (Ndata.Seq = Send Aseq)
begzn

{ removr w~imowletlg~d rwssage }

Ren~ovel(Send-bufkr);

Incsend-sey
end;

{ Receiving data }
t 7’cI ns
from EITHER -to same
u&en N.DA’I’Asesponse
pT)ovided NdataJd = D T
begzn

copy(Q.Msgdata , Ndata .Data) ;
Q.Msgseq := Ndata.Sey;
Format.ack(Q,B);
output N .DATA_request (B);
if Ndata.Seq = Recvsctq then
begin

Store(Recv-buffer $2);
Incxecv seq

end
end;

trans
from EITHER to same
when U.RECEIVE-request
provided not buffer-empty(Recv-buffer)
begin

{ retrieve received message }
Q := Retrieve(Recv-buffer);
ou.tpvl U.RECEIVE-response(Q.Msgdata);
{ remove message from receiving buffer }
Remove(Recv-buffer)

end;
end; (of module body)
end. { of specification }

