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ABSTRACT

A simple  and effective technique  for packet  authentication  in a datagram net-
work is described  that is based on the Data Encryption  Standard (DES). In accor-
dance with  FCC rules, the actual  data is not encrypted;  rather  DES is used to com-
pute  a special “cipher  checksum” that is appended  to the unencrypted  user data
before  transmission.  The  recipient  recomputes  the cipher  checksum  and compares  it
against  the incoming  value, thereby  detecting  bogus  or altered packets.  This  tech-
nique  is potentially  useful  in a wide variety of amateur  radio  applications  in addition
to packet  radio;  for example,  it could  provide  a secure control  link  for a remote
repeater  site.

1. Introduction

At the 5th ARRL Computer  Networking  Conference,  Hal Feinstein  described  a technique  for
authenticating  amateur  packet  transmissions  [l] useful  for protecting  radio  control  links.  In the com-
mercial  and military worlds,  the solution  is simple:  just  encrypt  everything.  Not only  does  this  protect
against unauthorized  commands  from  those  not knowing  the key, it also hides  the command  informa-
tion  itself.  In the amateur  service, however,  this  is prohibited  by FCC  rules.  [2] The  only  exception
is for command  links  in the Amateur  Satellite  Service;  [3] there  is no corresponding  exception  for
terrestrial  links.

Fortunately,  as Hal showed  in his paper, a rule change  is not necessary to add security  legally  to
a control  link.  Cryptographic  techniques  can be used to add “authentication”  to an unencrypted
command  to verify that it was sent  by an authorized  station. Hal assumed  that. a virtual circuit  would
be set up between  the control  station and the remote  site, and as a result  his technique  is quite
involved.  I have devised  a similar  but much  simpler  approach  made possible  by the use of a datagram
protocol.

2. The Data Encryption Standard
As in Hal’s approach, I use the Data Encryption  Standard (DES). [4,5] A full  description  is out-

side the scope  of this  paper;  however,  I will review two of its properties  since  they are important  to
the proposed  authentication  scheme.

1 . The  internals  of DES are public  knowledge,  since  the complete  specifications  have been widely
published.  Like  a well-designed  safe, however,  knowing  how DES works  isn’t  much  help  in
cracking  it; only  the key (or the combination)  need  be secret for good  security.  This  is what
allowed  DES to become  the first-ever  cryptographic  standard;  similarly  it allows us to establish
an amateur  authentication  standard  so that each  system operator  doesn’t  have to reimplement
the wheel.

2 . In practice,  DES has been highly  resistant  to “known  plaintext”  attacks.  [6,7,8,9,10] That is,
even with  a plaintext/ciphertext  “matched  pair”, the algorithm  is so nonlinear  that at present
there  is no known way (outside  of the NSA, at least)  to find  the key that produced  the transfor-
mation  other  than by trying all possible 2 56 keys  in the algorithm  until  you  find  the one that
works.  As we will see, this property  is very important  to the authentication  scheme  described
here,  since  each  transmission  contains  both the ciphertext  and the plaintext  that produced  it. It



should be pointed out, however,  that as yet there is no published mathematical proof that a
known-plaintext  attack against DES requires an exhaustive search. Despite some “suspicious”
structure  in the algorithm that reduces the required brute-force  effort  somewhat, the accusation
that a “trap door” may have been planted in the algorithm by its designers has yet to be either
proven or disproven.

As an aside, it is this resistance to known plaintext  attack that makes the M/A-Corn Videoci-
pher system (which encrypts the audio with DES) so hard to break. Anyone can buy a box, subscribe
to a service and get millions of ciphertext/plaintext  pairs.  However, that doesn’t help in finding out
the DES key in use, which you would need to build a pirate decoder. The key is kept inside the
decryption device in a battery-backed register which can’t be read from the device pins.  Only a physi-
cal attack is likely to work here, e.g., dissolving  the epoxy  off the chip with solvents and reading the
key from the exposed chip with a scanning electron microscope of the type designed for debugging
ICs under  test. This illustrates an important practical point in cryptography:  key security, not the
mathematical strength of the encryption algorithm, is usually  the weak link. Key security is harder
than you might think, especially  when many people  are involved.

3. DES Modes of Operation

The basic DES algorithm transforms 64-bit data blocks between pl.aintex!  and ciphertext form
under  control of a 56-bit key. As long as the key is constant, enciphering a given 64-bit data block
always  gives the same 64-bit  block of ciphertext. If you encrypt data directly in this way, you are
using DES in the Electronic Code Book (ECB)  mode. ECB can result in repeated patterns when, for
example, strings of blanks are encrypted. To avoid this potential problem, several  modes all involving
feedback are recommended  by the NBS. [ll] One of these is “cipher  block chaining”  (CBC). In this
mode,  each 64-bit  block of plaintext is exclusive-ored  with the DES ciphertext output for the last 64-
bit data block before being encrypted. (Since there is no preceding block:  of ciphertext the first  block
of plaintext is instead exclusive-ored  with a prearranged “initialization vector”). The ciphertext at a
given point in the message  therefore  depends on all of the data preceding it, not just the current
block, Any change therefore  “propagates” throughout  the rest of the message.

4. Authentication With DES

This error-propagation property is the basis  of the authentication  scheme, which can now be
described.

Encrypt  each packet with DES in the cipher block chaining mode. Then send the original unen-
crypted  packet  along with the last cipher word (64 bits) of the encrypted version. The receiver also
encrypts the packet and compares its final cipher word with the received version; if they match, the
packet is accepted. Changing even one bit in the message  results in a completely unpredictable
change in the cipher checksum with only 1 chance in 2 64 of escaping  detection by the receiver.

This technique  amounts to adding a “cipher  checksum” to the packet,  an apt description since
it functions  much like an ordinary checksum or CRC. The only difference is that the “checksum
algorithm” must protect against corruption or spoofing  by malevolent  humans as well as by nature,
and therefore  must be more sophisticated.

For example, it would not be sufficient  to generate the cipher checksum by computing a normal
checksum over the packet  and then encrypting it before transmission. A. spoofer  could carefully con-
struct a packet  to have the same checksum as a valid packet he had seen earlier on the channel, and
then append  the same cipher checksum. The size of the cipher checksum is also very important. Ordi-
nary checksums,  designed to protect only against random natural corruption,  are often only 16 bits
wide. It is not that impractical  to try all  65,536 possible  checksums until the correct one is found by
chance. Since the cipher checksum produced by DES is 64 bits wide, trying all possible  values  is out
of the question. Naturally, such a wide field also provides superior protection against corruption by
natural causes.
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5. Playback Attacks
Hal’s  paper  discusses  in detail  the problem  of the “playback attack”. Even though  the bad guy

might  not be able generate  his own message or corrupt  a real one without  upsetting  the authentication
mechanism,  he could  record and play back a valid  message at a later time in an attempt  to repeat the
same operation.

However,  using  a transport  (level  4) protocol  designed  for a datagram network  neatly solves  this
problem.  Such  protocols  are already designed  to detect  and reject  duplicate  packets  arriving minutes
or even  hours  after the original.  This  protection  is necessary because a dat.agram network  will occa-
sionally  deliver  a long-delayed  duplicate  of a packet, usually when its routing  algorithm  is trying to
recover  from a failing  or congested  link.  For example,  TCP  1121 uses 32.bit sequence  numbers,  so
over 4 gigabytes  must  be sent  on a given  connection  before the sequence  numbers  wrap around.  In
most  implementations,  subsequent  connections  generally cycle through  all possible  port numbers  on
the originating  end,  and this adds another  16 bits to the “sequence  space”.  Even when the exact
same pair of port numbers  is reused,  a clock has incremented  the initial  sequence  number  for the
connection  fast enough  that it is very unlikely  to reuse the sequence  numbers  from the last incarna-
tion  of the connection.  In short,  a properly implemented  TCP  can go a very long  time before it reuses
the exact same combination  of source address, destination  address,  source port,  destination  port, send
sequence  number  and receive sequence  number,  long  enough  for the DES key to have been con-
veniently  changed  in the meantime!

Connectionless,  transaction-oriented  transport  protocols  (such  as might  be used for the remote
control  of a packet  switch  or repeater)  can protect  against  duplicates  in several ways: with  sequence
numbers  as in a connection  oriented  protocol,  with  timestamping  (rejecting  packets  older than some
limit),  or by designing  the set of commands  in an “idempotent”  fashion,  which  means  that receiving
a command  more  than once  causes  no further  change  in the state of the system being controlled.

6. Implementation Issues

How could  a cipher  checksum  be added  to TCP/IP, and how  much  of the packet  should  it
cover? If the authentication  is to be end-to-end,  it can’t  include  the IP header,  [13]  since  at least the
time-to-live  (TTL)  field is modified  by each  IP packet  switch.  The  data covered  by the cipher  check-
sum must  be delivered  unchanged  for the cipher  checksum  to be valid;  therefore  it should  cover only
the data following  the IP header.  While  this  would  seem to open  up devious  opportunities  based on
modifying  the IP header,  this  really  isn’t  a problem.  TCP  and UDP [14] incorporate  “pseudo-
headers”  into  their  checksum  algorithms  that include  the IP source and destination  addresses,  proto-
col type  and data length.  Changing  any of these  fields  in the IP header  would  result  in a checksum
error  when  the packet  reaches  the destination,  and of course any attempt  to modify  the checksum
field in the TCP  or UDP header  would  be detected  by the cipher  checksum.

Another  question  is, where should  the cipher  checksum  go ? It would  be nice  to find  a place to
put it that wouldn’t  make the resulting  datagram incompatible  with  versions  of TCP/IP that didn’t
understand  it. This  suggests  placing  it in one of the option  fields,  either  in IP or TCP  (assuming  TCP
is used).  If it is put in the TCP  options  field,  one runs afoul of the specification  that says options
should  be present  only  in SYN segments  (connection  requests).  New TCP options  are also
discouraged.  This  leaves the IP options  field,  of which  there  are relatively many, some of which  are
not understood  by every implementation.  To allow for this, option  codes  always  include  the length  of
the option,  so that an unknown  option  type  can be skipped  over. Putting  the cipher  checksum  into
an IP option  also allows it to be used with  transport  protocols  other  than TCP  (e.g., UDP).

Other  minor  issues, such as padding  and the choice  of initialization  vector,  are easily  resolved.
Since the DES CBC mode  operates  on 8-byte  blocks  of data, data fields  not a multiple  of 8 bytes long
should  be padded  out with  zeros before encryption. The  initialization  vector  (IV) required  by the
CBC algorithm  could  serve as an additional  key element;  it would  be then  necessary  to know  both the
56.bit DES key and the 64.bit IV in order  to generate  and check  authenticators.  For the sake of sim-
plicity,  however,  the IV should  probably  be standardized  (e.g., all zeroes) and only  the DES key used
for security.



7, Summary

Authentication  is far easier to implement  in a datagram network than in one based on virtual
circuits, resulting in a much simpler and more elegant design. Since there is only one type of packet
at the datagram  level, there is only one type of authentication  operation. There is no need for a “ses-
sion key” or “challenge” at the beginning of a connection  should one exist at a higher protocol  layer.
Each datagram is individually authenticated  to protect it against spoofing  or corruption,  and eliminat-
ing the possibility  of a bad guy taking over a connection  (assuming one exists)  after it has been esta-
blished.  The measures already in place to protect against the accidental packet  duplication possible  in
a datagram  network automatically guard against playback  attacks.

A public-domain implementation  of DES in C is available  from the author.
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