
REAL-TIME LOW LEVEL SOFTWARE ON THE TAPR TNC

Margaret Morrison, KV7D
4301 E. Holmes Street
Tucson, Arizona 85711

602-325-4775

Introduction- -

This paper describes the low-level assembly
language routines (LLR) of software released with
the Tucson Amateur Packet Radio (TAPR) Beta Test
terminal node controllers (TNCs). The primary
functions performed by these routines are ini-
tialization of peripheral devices and data in W,
maintaining input and output (I/O) buffers, ser-
vicing interrupts from peripheral devices, hand-
ling nonvolatile RAM data storage and retrieval,
and calibration and checkout routines. Entry
points are provided which are appropriate to the
subroutine calling sequence of the Pascal compiler
used for the high-level routines (HLR). In ad-
dition, a low-level debug program provides capabi-
lity for direct access to peripherals, inspection
of RAM and ROM locations, and execution of tempo-
rary code in RAM. The present LLR code occupies
about six kilobytes of ROM.

Initialization-_I_

On receipt of a RESTART interrupt by the
processor, control passes to the low-level ini-
tialization routine. This section first sets up
the hardware stack, and then reads the on-board
DIP switches which direct the initialization of
user-settable parameters. These parameters, which
can be set to their default values stored in ROM,
or read from the 64 x 4 nonvolatile RAM, are
decoded and expanded. The program initializes
buffer pointers, counters, timers, and status
flags, as well as non-permanent user-settable
parameters. The peripheral chips are initialized
and checked to verify that they can be commanded.
If the UART can not be commanded, the program is
aborted and another reset is attempted. Failure
of other peripherals results in diagnostic mes-
sages. The VIA timer functions are coklfigured so
that Timer 1 acts as a pulse generator for the
HDLC controller and Timer 2 generates interrupts
for software timing functions. The initialization
section terminates by enabling interrupts and
typing a sign-on message, and passes control to
the HLR.

Buffer Management- -

One of the primary tasks of the LLR is main-
taining the I/O buffers. At any time there are
four active I/O buffers, input and output buffers
for terminal and radio data. An echo buffer,
which is configured identically with the terminal
output buffer may also be present. Data received
from peripherals (terminal and radio interface)
are placed into input buffers which are read upon
calls from HLR. Data placed into output buffers
by calls from HLR are passed to the peripherals

under interrupt control. Each buffer has an
insertion pointer, which is updated as data are
added to the buffer so that it points to the next
available cell, and a removal pointer which points
to the next cell to be read. All buffers are
'*circularfl, meaning that each time a pointer is
advanced it is compared with the top of the buffer
space, and moved if necessary to the bottom of the
buffer space. A buffer is "empty" when the inser-
tion and removal pointers are the same, and "full"
when the insertion pointer points to the next cell
below the removal pointer. The incoming and out-
going packet buffers contain, as the first bytes
of each packet, the byte count of the packet.

In addition to the two basic pointers, input
buffers have other markers to facilitate input
editing, and output buffers have space-available
counters for use by routines writing to these
buffers.

A pointer to the beginning of an incoming
packet serves two purposes. First, it allows an
incoming packet to be purged in case of a recep-
tion error (invalid frame-check sequence or
insufficient buffer space). Second, it facili-
tates storing the byte count of the packet upon
successful reception.

The terminal input buffer management iS

rather complex, and operates in three different
modes. In "command mode, *' character and line
editing functions are in effect,, and a pointer to
the beginning of the current line insures that
deletion past this point will not take place in
case of rapid terminal input or slow input proces-
sing. In *'conversation mode !, " an additional
pointer marks the beginning of the current packet
(actually the data portion of the packet), and an
additional editing feature allows the user to
cancel the current packet. Packets remain in the
input buffer until they have been acknowledged, at
which time the buffer is updated by a call from
HLR. A completed packet is signalled by the re-
ceipt of a packet-terminating character, and I: h:i s
character is placed in the buffer as a marker for
the end of the packet. In order to prevent c om-
mands from interfering with partially typed pack-
ets, separate input buffers a r e maintained, and
the pointers foIr the active buffers are swapped
when the mode is changed. This has the effect of
moving time-consuming decis:ions from the inter-
rupt dependent program to subroutines called from
HLR.

The third input mode is '*transparent mode , "
in which all characters received from the terminal
are transmitted. Packets are terminated on t'he
basis of number of characters or occurrence of a

2.50

timeout. Characters between the removal pointer
and the packet marker are divided into maximum-
length packets, with the remainder going into a
short packet. In order to avoid ambiguity as to
the composition of a packet, the packet marker is
not updated until all outstanding packets have
been acknowledged and cleared from the input
buffer.

Interrupt Service- - -

Although the 6809 microprocessor supports two
levels of hardware interrupt, a fast interrupt
(FIRQ) and a normal interrupt (IRQ), only the IRQ
is implemented on the TAPR TNC. All peripheral
IRQ lines are wire-ORed together into the IRQ
input to the processor. Interrupt outputs from
each peripheral can be disabled independently
without affecting the processor's response to IRQ.
Upon receipt of IRQ, the processor transfers exe-
cution to a routine which examines each device in
turn and passes control to a routine specified in
a dispatch table* For maximum flexibility, the
interrupt dispatch table is stored in RAM. The
addresses in the table are initialized during the
startup procedure, and are changed as the TNC
operates in different modes.

The peripheral devices are assigned priori-
ties according to the order in which the dispatch
routine checks their status. The priority of ser-
vice is

1. UART (terminal) input
2. UART output
3. Timer interrupt
4. All HDLC (radio interface) interrupts

Interrupts from the parallel I/O port are not en-
abled in the initial software release; when they
they will be assigned lowest priority. The HDLC
is currently assigned lowest priority because the
interrupt service is quite complex and the chip
will generate spurious interrupts at a high rate
under noisy conditions. The UART was placed ahead
of the timer, since the 6522 timer mode used pro-
vides a mechanism for compensating for delayed
interrupt servicing. The UART output ought pro-
perly to be assigned a lower priority, but it was
placed after the input service for convenience,
since input and output status are given in the
same register. Parallel port I/O must be assigned
the lowest priority to insure that it does not
interfere with other interrupt service.

As a diagnostic tool, the interrupt dispatch
routine writes signals reflecting interrupt condi-
tions to the parallel port, which is configured as
16 output bits for the initial software release.

Terminal I/O

The terminal input interrupt service normally
consists of two parts: an initial routine during
which interrupts remain disabled, and a subsequent
unprotected routine. The protected routine reads
a character from the UART data register and places
it in a temporary holding buffer, after which
interrupts are enabled. This is because the input
editing and echoing function is enabled upon re-
ceipt of each character, and this can be a complex
procedure in some cases. Depending on the input
mode, the character may be tested against an

assortment of special characters, and this may
result in flow control action or change of input
mode. Characters which terminate packets or com-
mand lines require that pointers be updated and
flags set for other routines. Input editing char-
acters cause immediate update of the input buffer.
Finally, an echo routine is called, which places
characters in an echo output buffer. Input chhr-
acters are not echoed directly, since adequate
terminal support sometimes requires that more than
one character be echoed for each charatzter input.
In particular, automatic line feed after carriage
return is a common requirement, and some hard-copy
devices require many null characters following a
carriage return. If the input buf.fer becomes
nearly full, a request may be made to the output
routine to transmit an XOFF character. Alterna-
tively, a routine to produce the appropriate hard-
ware flow control signals to the RS-232 interface
may be called.

Special input service routines are used when
the program operates in "transparent mode." Since
there are no special characters, the input ch!arac-
ter is simply placed in the buffer. A timer may
be started, and a flag will be set if a maximum
packet count has been reached.

The UART output interrupt is disabled when-
ever there is no data to be sent, and any routine
which requests output enables the interrupt. Any
special treatment of characters, such as conver-
sion to upper case or adding line feeds or nulls,
is done by the routine which fills the output
buffer, which also maintains a screen-width
counter and inserts extra carriage returns as
necessary. The output service routine checks for
tasks to be performed in the following priority
and performs the first task found.

1. Request to transmit XOFF character
2. Request to transmit XON character
3. Transmit characters in echo buffer
4. Transmit characters in output buffer

If all tasks are exhausted, the routine disables
the output interrupt. This is not necessary, but
as long as this interrupt is enabled, the UART
generates an interrupt at regular intervals.

Timer Interrupts.---

The basic function of the timer interrupt is
to update the software clocks. The interrupt i 6
set to occur at 10 ms intervals, which provides
good resolution for timing associated with the
radio interface. For longer times, a "slow" clock
is updated at one-second intervals. An additional.
10 ms clock is used as a pseudo-random number
generator for determining packet retry t:imes.

In addition to the 'basic clock function, sev-
eral tasks are performed under timer interrupt
control. If a CW ID is in progress, the Morse
Code routine is invoked every 60 ms to toggle the
tone on or off as necessary. Otherwise, a variety
of tasks to be performed affter time lapses are
checked l Packet transmissions are begun following
an appropriate interval following det.ect;ion of a
carrier drop, and the ID is sent at regular inter-
vals. If a CW ID is commanded manually, it is
begun in this routine. A special set of routines
is entered when the ,program runs in "transparent

2.51

mode, ” and the appropriate routine is selected by
reference to a status table. These routines mark
packets for sending upon timeout of clocks which
are started on character input, and set up guard
times for the escape sequence for exiting this
mode.

HDLC Interrupts

The WD-1933 HDLC controller generates inter-
rupts for seven different conditions. Since any
combination of interrupt conditions can be pres-
ent, and most conditions are cleared by reading
the status of the chip, all possibilities must be
considered at every interrupt. The interrupt
conditions are requests for service of input or
output registers (DRQI or DRQO), transmission or
receipt of end of message, with or without errors
(XEOM or REOM), and change of state of carrier
detect (DSC).

Transmit interrupts, DRQO, XEOM-ok, and XEOM-
err, are handled according to a state table which
indicates the progress of the packet in transmis-
sion. The appropriate action, as determined by
the state table, is taken if any of these inter-
rupts is detected, without reference to which con-
dition was indicated. The only transmit error
possible is under-run, or failure to service a
DRQO. This condition should never occur in normal
operation. Following complete transmission of a
packet and while final flags are being sent, the
routine checks for further packets to be transmit-
ted before the transmitter is unkeyed. The CW ID
may also be started from this routine.

Receive interrupts, DRQI, REOM-ok, and REOM-
err, are handled according to the condition indi-
cated by the chip status. In the event that more
than one condition is present, a DRQI is assumed
to precede an REOM, and the input register is read
before closing the packet. If both REOM-ok and
REOM-err are present, the error condition is dis-
regarded. Causes of the error condition are
aborted frame, invalid frame-check sequence, and
over-run (failure to service DRQI). The cause of
the error is not investigated and any partially
received frame is cancelled. Another possible
source of error is insufficient room in the input
buffer for the incoming packet. If the input
buffer becomes full, a flag is set and the routine
continues to read incoming characters as they
appear, but an REOM-ok is treated as if it were an
REOM-err.

The DSC interrupt does not affect either
transmit or receive operation. The carrier detect
input of the HDLC controller is the demodulator
lock-detect and is used to recognize a busy chan-
nel. The service routine maintains software flags
which reflect the carrier detect state, and if the
carrier is found to have dropped, a timer is
started which indicates when the next transmission
may be started.

Nonvolatile UP! Interface

A number of user-settable parameters are
stored in a semi-permanent state in the Xicor
NOVRAM. To make maximum use of the 32 bytes of
storage, the data is encoded in a compact form.
In order to be useful to the program, it must be
translated. The information stored includes ter-

minal attributes such as baud rate and parity;
radio-link attributes such as baud rate, packet
length, and transmitter keyup time; display fea-
tures such as case conversion, echo mode, auto
line feed, screen width, and nulls required.
Special command characters for flow control, exit
to command mode, and editing features are also
stored, along with the station call sign. These
parameters are changed by commands to HLR, which
maintains the compressed copy of the parameters by
calling LLR whenever a parameter is changed. This
copy is overlaid on the nonvolatile storage a!3
volatile RAM data, and becomes permanent when the
"STORE" line is toggled. The nonvolatile RAM is
controlled through the parallel I/O port of the
6522 VIA.

Calibration Routines- - - -_I-

The hardware design of the TAPR TPJC provides
for on-board calibration routines. Jumpers are
connected which allow the V1A Timer 2 to count the
modulator or demodulator frequency to be calibra-
ted. The VIA timers are reconfigured so that
Timer 1 acts as a free-running count-down timer,
counting at the 921.6 kHz system clock rate, and
Timer 2 generates an interrupt after two cycles of
the tone frequency being calibrated. By starting
the timers simultaneously, Timer 1 can be used to
count clock pulses for the duration of two periods
of the frequency being calibrated. Two of the LED
indicators a're cant rolled in parallel with the
microphone audio and HDLC reset lines, and are
used in this routine as visual indicators of fre-
quency deviation from the desired values. The
timer routines in the interrupt dispatch table are
replaced with special calibration service rou-
tines.

High-level Interface~~

Most of the entry points provided for HLR are
concerned with buffer management. The I/O func-
tions performed through these routines are: read
a string from terminal or packet input buffer to a
specified location; write a string from a speci-
fied location to terminal or packet output buffer;
return character count for an outgoing packet in
the terminal input buffer; update terminal input
buffer; and return space-available count for out-
put buffers. Other functions provided are: up-
date nonvolatile RAM, tlemporary or permanent mode;
enter calibration routine; force CW ID; and per-
form a soft reset. A special routine is called by
HLR to notify LLR of a change of mode from "corn--
mand mode" to "converse mode" or "transparent
mode." All routines arte called with the addresses
of the arguments in processor registers D, X, Y,
and U as needed.

Low-level Debug Program

A debugging facili,ty is prlovided in the .LLR,
primarily as a software development tool. This
program is invoked by a special user-settable
character. In order to preserve as much informa-
tion as possible about the system prior to enter-
ing the debugger, the active terminal input and
output buffers are ‘*fro:zen” upon entry by swapping
the buffer pointers with a set of pointers used
exclusively in the debugging program. All termi-
nal input thenceforth is interpreted as commands
to the debugger. These commands permit examina-

2752

tion or modification of any addressable location,
modification of the processor registers as they
were upon entry to the program, or transfer of
execution to any location. This allows test
routines to be stored in RAM and executed. The
user also has direct access to I/O addresses, and
can observe the contents of I/O buffers without
interfering with them.

2.53

