
PACKET
STATUS
REGISTER

TAPR

TM

#94 WINTER 2005

President’s Corner 1

Ten-Tec to Offer TAPR Vector
 Network Analyzer 3

DSPx for Embedded Applications
 Update 4

Commercial HSMM 5

D-STAR D-Licious? 7

Confronting AX.25 V2.2 8

PIC-et Radio IV: How to Send PSK31
 Data Using Inexpensive PICs 10

Eliminating Source Routing
 from APRS 16

Inexpensive GPS25 Offered 18

TAPR Order Form 20

President’s Corner

A New Partnership
By John Ackermann, N8UR, n8ur@tapr.org

Elsewhere in this issue of PSR you’ll read about
the agreement just reached between TAPR and Ten-
Tec for manufacturing and marketing the TAPR
Vector Network Analyzer
(VNA) designed by Tom
McDermott, N5EG, and
Karl Ireland. I’ve written
about the VNA before and
the press release describes its
capabilities, so I won’t repeat
all that here.

Instead, I’d like to talk about the TAPR/Ten-Tec
partnership and why it’s a great thing for TAPR.

Many TAPR products are fairly simple to build and

have modest market potential. There are plenty of
TAPR kits that have sold less than 100 units, yet
we count them as successes because they filled a
need for both the designer and a segment of our
community. A few projects, like the Pic-E, are both
simple and very popular, while others, like the DSP-
10, are much more complex (but still within the
reach of the homebrewer) and have a more limited
market because they are quite specialized.

Every now and then, TAPR does a project that’s
both complex and has a lot of market potential.
The TNC-1 and TNC-2 were our first examples of
this, and our greatest successes. The FHSS radio,
had things worked out differently, would have been

another. The VNA is a third.

The VNA is both technologically innovative and
very, very useful. It has the potential of reaching far
beyond TAPR’s usual base of experimenters and
into the shacks of HF operators; QPRers, contesters,
DXers, and RF experimenters of all stripes will find
the VNA an indispensable piece of test equipment.

And, while 90 percent of its assembly is within the
reach of many of us, it does use a handful of surface
mount ICs that have many tiny leads spaced very
closely together. To successfully solder them requires
access to a microscope and other specialized tools.
It’s just not practical to expect most of us to build
the VNA up from a bare board. The economics

TAPR PSR #94 WINTER 20052

of circuit board manufacturing mean that partial
assembly (e.g., putting the difficult parts on, but
leaving the rest as a kit) doesn’t make sense because
it costs virtually as much to have six parts mounted
as one hundred.

So, we were left with a great product that (a)
reflects the innovation that is a TAPR hallmark; (b)
has great market appeal, including to users beyond
our usual ranks, and (c) is too complex to handle as
a kit. What to do? Look for a partner.

The TAPR gang has gotten to know the folks
at Ten-Tec quite well over the last couple of years
and we decided to see if they would be willing
to manufacture the VNA for us. An initial
conversation showed that beyond acting as a
contract manufacturer, Ten-Tec was also interested
in marketing the VNA; as a leading manufacturer of
high-performance HF gear, many of their customers
would have an interest in a piece of gear as versatile
and accurate as the VNA. Discussions started last
fall and resulted in the agreement that we signed in
December.

Under that agreement, Ten-Tec obtains a license
to manufacture and sell the VNA. In exchange,
TAPR gets some financial benefits (the details are
confidential, but our development costs are covered
and we will generate a long-term income stream
based on the VNA’s commercial success). More
importantly, the VNA will carry the TAPR logo as
well as Ten-Tec’s and this will be an opportunity for

us to reach a whole new audience.

Tom McDermott has made the software for the
VNA available under a free software license and
under this agreement, Tom’s software will remain
open source and available for experimenters to play
with. Ten-Tec will have the right to do their own
proprietary development if they choose, but the
current software will remain available and TAPR
will support further open development through our
mailing lists and other services.

I can’t end this report without expressing TAPR’s
great thanks to Tom for creating a groundbreaking
design and turning it over to TAPR to run with.
This isn’t the first time that Tom has contributed an
important piece of work to the community. He truly
exemplifies the ham spirit, and we thank him.

Other VNA News
Since I’m talking about the VNA, there are a

couple of further bits of information to pass along.

Several folks have asked about buying a bare PC
board. While those parts with lots of tiny leads
make this project too difficult for most of us, bare
boards will be available through TAPR in single
unit quantities for those who want to tackle it.
Pricing and timelines have yet to be finalized, but
we’ll make an announcement when the boards are
available.

Next, Tom has made a major improvement
in the VNA design since the beta versions were

assembled. He’s figured out how to get about 30 dB
more dynamic range out of the unit for gain/loss
measurements and the Ten-Tec version will include
that improvement (there’s also a retrofit available
for the beta boards). That means that the VNA will
be able to measure filters with 70 dB or more of
attenuation; that kind of capability is normally seen
only in lab-grade equipment, so Tom’s done a great
job.

TAPR at Hamvention
We’ll be at Hamvention in full force again this

year with our usual booth location, Friday morning
Digital Forum, and Friday evening BASH. We hope
to see you there!

Make Your Plans for DCC 2005!
The 2005 ARRL/TAPR Digital Communications

Conference will be held in Santa Ana, California,
from September 23-25. It’s not too early to mark
your calendar and make your plans for this year’s
installment of one of the best technical conferences
in Amateur Radio! Learn all the details at http://
www.tapr.org/DCC.

###

TAPR PSR #94 WINTER 20053

Ten-Tec to Offer TAPR Vector Network Analyzer

Ten-Tec and TAPR are pleased to announce an
exclusive agreement to manufacture the PC-hosted
100 MHz Vector Network Analyzer (VNA) designed
by TAPR member Tom McDermott, N5EG, as
described in the July/August 2004 issue of QEX.
The VNA is a tool for analyzing passive networks,
including antenna systems.

The VNA allows measuring the forward and
reverse gain and phase response of a circuit, and the
input and output reflection properties (complex
impedance). VNAs are used to measure and adjust
filters, coaxial cables, amplifiers, antenna input
impedance vs. frequency, just to name a few uses.

A unique feature of the PC-hosted VNA is that
it is controlled completely from a PC via USB
interface. Software for Windows(tm) 98SE or later
Windows OS is included with the VNA. An open-
source version of the software is also available from
TAPR and TAPR will host mailing lists and other
resources for users and developers.

The illustration below is for informative purposes;
finished unit will be sold complete with enclosure.
Production of the Ten-Tec/TAPR VNA is scheduled
for late spring 2005. Price is estimated at $650. For
further information contact sales@tentec.com

###

Ten-Tec TAPR Vector Network Analyzer (VNA)

TAPR PSR #94 WINTER 20054TAPR PSR #94 WINTER 20054

DSPx for Embedded Applications Update
By Lyle Johnson, KK7P, kk7p@wavecable.com

In May, 2003, the KK7P DSPx signal processing
module was released at the TAPR booth at the
Dayton Hamvention. This module was designed for
experimentation and self-education in digital signal
processing (DSP).

The KDSP-10 kit was introduced to support
the DSP-10 Software Defined Radio designed by
W7PUA and kitted and sold by TAPR. In addition
to its duties providing a suitable interface between
the DSPx and the DSP-10, the KDSP-10 serves as a
development platform for the DSPx.

Sound like old news? Two things have changed in
January 2005 regarding these TAPR products.

DSPx
The DSPx includes flash memory. The earliest

units had a 64k byte memory, later units come
with 512k bytes of memory. However, there was
no support for allowing the DSP to self-program
its flash or for it to run any other application at
power-up unless the flash chip was removed and re-
programmed. All that has changed.

Available for free download on the DSPx web site
(http://www.kk7p.com/dsp.html) is a program
called FLASHUTL. This program allows you to
selectively erase and program the flash memory on
the DSPx.

Also available on the same web site is a new
Monitor, which has an additional command to
boot from flash, as well as a provision to recognize
a jumper on the DSPx. If the jumper is in
place at reset, the DSPx will run an application
program rather than the Monitor. In addition, a
new command, $BF, allows you to jump to the
application program in flash from the Monitor
prompt.

Numerous applications have been programmed
into flash and booted just to test this. This includes
almost all software from Experimental Methods in RF
Design, including the 18-MHz transceiver. Complete
directions for loading and using FLASHUTL to
reprogram the DSPx with the new Monitor are on
the web site.

KDSP-10
A new version of the KDSP-10 kit has just been

released by TAPR. This is compatible with the
existing one in every way, but has two additional
features.

The first is an on-board 5V buffer with high drive
capability. This buffers four output signals used
by the DSP-10. Until now, KDSP-10 owners have
often had to patch in an inverter section or two to
get sufficient drive to reliably command the shift

registers on the DSP-10 board for programming the
synthesizers, etc. That is no longer required.

In addition, the board supports (but does not
include) a 6-bit DAC. This is used by the G3XJP
“Pic A Star” transceiver project.

Where is the DSPx being used?
There are lots of applications for embedded DSP

in Amateur Radio. Hundreds of DSPx boards have
been sold to amateurs around the world. G3PJT
built the EMRFD 18-MHz transceiver and ported
the DSP code to the DSPx.

A pair of hams in Perth, Australia, have created a
160m radio using the DSPx and code based on the
18 MHz transceiver code ported by G3PJT.

A ham in Italy has built a Pic A Star using code
ported to the DSPx.

Elecraft (http://www.elecraft.com) is using the
DSPx in their KDSP2 option for the K2 transceiver.

The American QRP Club (http://www.amqrp.
org) has incorporated the DSPx into their antenna
analyzer project.

Where will you use yours?

###

TAPR PSR #94 WINTER 20055

Commercial HSMM
By Don Rotolo, N2IRZ, n2irz@arrl.net

Not long after 802.11 gear became popular, we
heard about High Speed Multimedia (HSMM)
systems. The idea is that radio amateurs could use
commercial 802.11b/g gear under Part 97 instead of
Part 15 of the FCC rules, building an 11 Mb/s (or
faster) data network on 2.4 GHz.

The advantages of Part 97 include a somewhat
higher power limit, allowing for networks with
reasonably spaced network facilities on the order of
a few miles, instead of hundreds of feet. Hams can
also use antennas different from those approved by
the FCC for Part 15 use. Part 97 operation also adds
some complexity aside from ID-ing and security
- you need to find higher power gear, and get some
better antennas - not always an easy or cheap option.

The reality is that no major HSMM networks
have been built, to my knowledge, despite the
ready availability of good, cheap equipment. (If you
know of one, please write!). In this short article,
we’ll look at why that is, and examine a commercial
implementation of what is essentially a HSMM
network.

Line of Sight
The greatest hindrance to widespread deployment

of an amateur HSMM network is the propagation
characteristics of 2.4 GHz radio waves. Any RF link

of reasonable distance must be optical line of sight,
with hardly any RF-attenuating materials between
antennas. A thin layer of brick or wood siding
hurts a little, but a thousand feet of leaves - even if
they total only a thousandth of the path length in
thickness - has a devastating effect upon 2.4 GHz
path loss. For most hams, at least in the major
population centers of the east and west coasts, tall
trees reduce the viability of HSMM networks to
almost zero.

Even with an antenna above the trees, feedline
losses at 2.4 GHz are large, so equipment generally
needs to be located near the antenna. Such
equipment is not terribly expensive, but it’s more
costly than the consumer-grade gear so readily
available.

Aside from line of sight (LOS) issues, we have
HTS. Just like AX.25 Packet, 802.11 does not
tolerate the Hidden Transmitter Syndrome well.
HTS is when two or more stations are trying to
communicate with a central station. The central
station can hear each remote station, but the remote
stations cannot hear each other. The stations often
transmit at the same time - ‘doubling’ - and both
transmissions are damaged at the central receiver.
The result is very poor upstream throughput.

Another significant issue is timing inherent to
802.11. It simply was not designed for long-haul
links, so the few microseconds of light-speed delay
from a 10-mile link becomes significant, again
affecting throughput. The 802.16 (WiMax) protocol
addresses the timing issue well.

There are more reasons why we don’t have a
decent HSMM network, but these are the big ones
in my view. Not that these cannot be solved, but
it does add a level of difficulty to a widespread
deployment.

Now let’s have a look at how one clever company
got around these issues.

Sky Pilot Network, Inc (http://www.skypilot.
com) has taken small piles of commercial off-the-
shelf (COTS) 802.11a gear (5.8 GHz), added some
controlling circuitry and antennas, and developed
an easy-to-deploy high-speed network. The main
disadvantage is the cost - a well-equipped network
for a dozen widely-spaced users (or clusters of users)
might cost $10,000. The advantage is nearly drop
to deploy technology - simply feed the network
element some power and it’s ready with minimal
configuration necessary.

The central element is a “Sky Gateway”, about
$2500. This is the central controlling element for

TAPR PSR #94 WINTER 20056

the network, and the link to the Internet (think
commercial applications). You only need one, but
it’s not optional. Around that, you deploy any
number of “Sky Extender” devices ($500), which are
essentially intelligent digipeaters. Last, for each user
(or cluster of users connected through some other
means - 802.11b/g, Ethernet, packet...) you need a
“Sky Connector” ($350), which is essentially a patch
antenna that is pointed at either an Extender or the
Gateway.

These prices might seem expensive for ham gear
- they are - but compared to my cable connection
at $45/month, I’d break even in well under 2
years, even contributing heavily to the cost of a
Sky Extender and a bit for the Gateway. Note that
the Gateway can support more than a thousand
Extenders/Connectors.

Although 802.11a supports up to 54 Mb/s raw
data rate, the Sky Pilot system claims to offer about
3 Mb/s actual throughput on a sustained basis, in
both directions. That’s a bit better than my cable
modem. Range for true LOS is up to 20 miles,
while Near LOS range is about 4 miles. These
long rages are due to three factors: high-power
transmitters, high-gain antennas (152.5 dBm link
budget) combined with a type of Demand Assigned
Multiple Access (DAMA) protocol to ensure no
HTS exists.

The antennas are the key. There are about 16 high-

gain, highly directions antennas arranged in a circle.
The extender or gateway can transmit or receive on
more than one antenna at a time. Using directional
antennas allows relatively high power (about a watt,
not entirely sure) under Part 15. The directionality
allows a few transmitters (but not 16) to be in use
at the same time without mutual interference. It
also makes a DAMA scheme easier, since you have
to switch to the right antenna for a given direction
anyway.

The network software is fairly advanced. Although
you can control and monitor everything - remember
this is intended as a commercial system to compete
economically with Cable and DSL - the network
is self configuring (if you want it to be), routes like
FlexNet (measuring paths to find the best), and
has loads of features for access control, network
topology, and so on.

While expensive, the Sky Pilot system could
conceivably be deployed as an amateur HSMM
network. The point of this article, however, is
to bring attention to the fact that all of these
technologies already exist in the Amateur Radio
world, and perhaps those wanting to deploy a
very fast radio data network can look to the Sky
Pilot system for some good ideas on putting these
technologies together into a workable whole.

I would imagine that even the development of a
compatible replacement for the Gateway to be used

by amateurs would bring the cost of such a network
well within the reach of even smaller clubs and
organizations. Even some of the ideas - like multiple
antennas for point-to-point omni-directional
coverage (not an oxymoron) - might work well for
HSMM deployments, especially under Part 15.

HSMM networks using standard 802.11 gear
sure sounds like a good idea, but there are some
problems. Even though these problems are not
new and have already been solved in the amateur
world, 802.11 gear is less flexible than, say, a TNC.
The result is that I have yet to find a large HSMM
network. A small start-up in California has gone
a step further and created the elements of such a
network, designed to rival cable, DSL and WiMax
deployments. Amateurs with a lot of cash can
simply buy an HSMM network or use the ideas to
build something similar. If only I didn’t have 75-foot
trees (and a 50-foot tower - sigh), I’d be the first one
in the neighborhood to put up a 54 Mb/s user port
on 13 cm.

###

TAPR PSR #94 WINTER 20057

D-STAR D-licious?
By Ed Woodrick, WA4YIH, ewoodrick@ed-com.com

The waiting begins

At the 2002 Dayton Hamvention, Icom whetted
our appetite with the D-STAR line of radios,
specifically the ID-1. Well, I waited and waited and
alas, at the Dayton Hamvention in 2003, I gave
HRO a lot of money to reserve me two of the radios
when they came out in a few months. Well, a few
months passed, no radios. Dayton 2004 even passed
with no radios. However, just as 2004 ended, Icom
America shipped the long anticipated ID-1 digital
voice and data radios.

Analog Voice - USB Control
What is the ID-1? It is a 1.2-GHz radio with

1 and 10 watts output. It looks like any other
mobile. However, one of the first differences is
the USB pigtail in the back. The USB port allows
for complete control of the radio without the
control head. That means that you can plug the
microphone directly into the main unit, add power
and an antenna, program it by computer and you
are on the air. No control head is required for
operation, great for those situations where you do
not want any knob twiddling!

Digital Voice and Data
There is another use of the USB port: a low speed

data mode at 2400 bps. While not exactly blindingly

fast, the 10-ms TR delay means that you can get
better throughput than you can on 1200 or even
2400 bit/s packet implementations.

With the ID-1 in Digital Voice and Data mode, an
AMBE (2.4Kbps) CODEC provides for what Icom
is referring to as “Toll Quality” voice. I will admit
that it sounds good, a lot better than some of the
other Amateur Radio implementations, even better
than many cellular providers.

Digital Data
Looking at the rear of the ID-1, there is yet

another pigtail. It looks like a standard microphone
RJ-45, but in reality, it is an Ethernet RJ-45! Cool!!!

This is where the ID-1 stands out from just about
any radio: the ability to transmit Ethernet protocols.
At 128 kbit/s, the ID-1 provides “faster than the
phone modem” connectivity. In addition, when
connected to the Internet, it is possible to browse
web sites at decent speed.

ID-1 Applications
The ID-1 provides a basic building block that

many different types of applications may use.
Short message services in the Digital Voice and
Data mode allow for Instant Messenger types of
applications. The ID-1 control head will even
display messages.

The killer application for the ID-1 has to be
Ethernet. It provides a transport that is compatible
for just about anything. I have used Echolink, sent e-
mail, received weather maps, sent pictures, and even
read Packet Status Register. This radio has the promise
to bring Amateur Radio into the 21st century.

The ID-1 is only one of the radios that Icom is
producing that is a part of the D-STAR system
developed by JARL and Icom. There is a lot more in
the pipeline.

What can it do for you?

###

TAPR PSR #94 WINTER 20058

Confronting AX.25 V2.2
By Jim Wagner, KA7EHK, wagnerj@proaxis.com

Two years ago, I mused about some of the
problems of packet radio and whether or not
software could help [1]. Recently, I’ve started trying
to turn some of those ideas into working code. Now,
I have come to the point where I must confront the
specification for ax.25, V2.2 [2].

I see some really big problems with that spec and
I wonder whether or not anyone else has solved
them. The biggest seems to be the inclusion of
modulo-128 sequence numbers. Unnumbered
frames contain no sequence numbers, so there is
no change with U-frames. Supervisory frames can
now have a control field containing 1 or 2 octets,
but there is no PID field or Information field, so the
size of the control field can be uniquely determined
without reference to any preceding packets.

Not so for I-frames. I have been unable to identify
any feature of an isolated I-frame that will allow
determination of the structure of its control field.
When monitoring packet frames, it now appears
necessary to maintain a history of packets between
station-pairs in order to determine what the I-frame
format is. Rob, PE1CHL, proposed in 1995 [3]
that one of the address field “R” bits be used to
designate which control field format is in use. That
seems like an eminently practical idea but it didn’t
seem to make it into the specification. So, my first

question is: Has anyone actually put modulo-128
packets on the air (in an environment containing
both modulo-8 and modulo-128 sequence numbers)
and, if so, how is monitoring managed? Or, am I
missing some key fact?

A second problem has to do with the new
“Parameter Negotiation”. Section 6.3.2 of the
specification says “Parameter negotiation occurs at
any time”? Does this mean any time after making a
connection? Or, does this mean exactly as written
- any time? For example, A connects to B, and asks
for modulo-128 sequence numbering; B says “OK”
and the exchange proceeds, ending in a disconnect.
On the next connect, A might logically assume
that the previous negotiation is still valid while B
may have determined that modulo-8 is in order.
Is it B’s responsibility to renegotiate? Or, is a new
negotiation expected with every new connection?
Is there any consensus as to which initiates a
negotiation - the station initiating the connection,
perhaps?

The third problem is with the state diagrams now
included within the ax.25 specification. There is a
primitive for Layer 3 to request a connection, “DL-
CONNECT Request.” There is a primitive for the
Data Link to report that the connection request has
been satisfied, “DL-CONNECT Confirm.” But, no

indication when the Data Link has tried and failed;
Layer 3 would really like to know! Similar situations
appear with several other inter-process primitives.
How do programmers deal with this sort of thing?
Do you just add primitives to suit your needs? Or
do you ignore the state diagram and just charge on
through?

A fourth problem has more to do with
understanding than anything else. As I started
reading and dissecting the specification, I was
sure that the Link Multiplexer would be used to
manage the distribution of outgoing packets to
various radio ports; that is, after all, the essence
of “multiplexing”!” The more I read, the more I
understand that this is not what is intended for the
Link Multiplexer. But, I do not understand what it
is supposed to do, nor how the issue of radio ports
is to be managed. On the surface, it would appear
that the issue of multiple radio ports was ignored in
the specification; am I missing something?

With all of these issues, I wonder about some
of the less obvious changes from V2.0 to V2.2.
For example, what would be the consequence of
violating the new limit of two digipeater addresses?
The state machines never seem to test for the
number of address fields in packets passed through
via digipeating. Nor is the number of address

TAPR PSR #94 WINTER 20059

fields tested in a packet addressed to that station;
is a packet containing more than 2 digipeater
addresses to be rejected? So, it would seem only to
affect packets generated by that station. Beyond the
new TEST and XID packet, which seem relatively
benign, we have changes in the handling of FRMR
and the new SABME. Has anyone put any of
these into practice (and care to comment about
performance)?

Next is the inter-relationship between KISS
hardware and the ax.25 state machines. Clearly,
KISS resides somewhere below the Data Link. But,
which functions of the Physical State Machine are
implemented within the KISS hardware and which,
if any, need to be implemented in host software
remains a bit of a mystery. Among other things,
the KISS interface provides none of the reverse
messaging implied in the ax.25 specification. How
have other software writers dealt with the KISS
interface issue?

Speaking of KISS, there are a number of
implementation challenges with respect to KISS
that are not really part of ax.25. One such challenge
is management of the message rate into the KISS
TNC to prevent needless overrun of TNC transmit
buffers. Certainly, there is something better than
just throwing data at it as fast as the serial port
allows. When I have contacted other developers, the
answer is usually something along the lines of “Gee,
I really don’t remember. Why don’t you look at the
source code?” There has to be something better!

Certainly, I am not the only person to have
questions about protocol and implementation
matters such as these. Yet, I can find no discussion
forum, no archive, nothing that can be referred
to! While programming activity is not very high,
particularly in the U.S., it must be happening. Why
not open a forum (list), perhaps following the lead
of APRS developers? TAPR should be able to host
such a forum and it would provide an invaluable

exchange. If someone needs to be the moderator of
such a list, I will offer my services and if TAPR isn’t
interested, then a medium such as Yahoo Groups
ought to work. If we don’t get our arms around the
issues, we are going to be stuck with old software
that does not meet user’s expectations and packet
use will continue to wither. If you are interested
in such an exchange, or just want to provide some
response to questions, please contact the author at
wagnerj@proaxis.com.

[1] Revitalizing “Plain” Packet, Jim Wagner,
KA7EHK, TAPR PSR #87, Spring 2003, pp 6-8.

[2] AX.25 Link Access Protocol for Amateur Packet
Radio, Version 2.2, Revision: 11 November, 1997,
William A. Beech, NJ7P, Douglas E. Nielsen,
N7LEM, Jack Taylor, N7OO, Tucson Amateur
Packet Radio Corporation

[3] http://www.ir3ip.net/iw3fqg/doc/ax25ext.
htm

###

TAPR PSR #94 WINTER 200510

PIC-et Radio IV: How to Send PSK31 Data Using

Inexpensive PIC Microcontrollers
Initial Draft
By John A. Hansen, W2FS, hansen@fredonia.edu

Author’s note: This paper is the fourth in a continuing
series of papers that explore the possibilities of using
microcontrollers to implement digital communication
technologies. The first three papers in this series were
originally presented at various TAPR/ARRL Digital
Communication Conferences and can be found on the
“documentation” page at http://www.tnc-x.com. This
paper describes an ongoing project and is subject to revision
as that project is completed.

PSK31 is a wildly popular digital mode used on
the HF bands mostly for keyboard-to-keyboard
communication. It was developed by Peter Martinez,
G3PLX (see http://psk31.com/G3PLXarticle.
pdf for details). Software is available to operate this
mode on most PCs using PC soundcards to do the
digital to analog and analog to digital conversion.
The mode is a natural for low power transmitters
because it is so efficient solid copy can be obtained
with extremely weak signals. Relatively simple (even
indoor) antennas have also been used for reliable
communication using this mode. Given this, it
would seem to be a great mode for QRP portable
operation with, say, a Yaesu FT-817 or ICOM 703.
However, it does require a PC with a sound card

and to date, there are no handheld PC options
available that meet this requirement. Thus it would
seem that a laptop at least would be required.
However, It seems to me that lugging a laptop along
could take a lot of the fun out of QRP portable
operation.

Interestingly
enough, the
AOR TDF-370
(see picture) is
capable of receiving
PSK31, but for
some reason they
didn’t include the
ability to transmit
it. This seemed
rather odd to me
since I’d thought
that receiving the

data would be the hard part, not transmitting it.
I think the TDF-370 may have severely limited its
market by not including this feature. To be honest,
my longer-term goal in this project was to develop a
terminal that would both send and receive PSK31,

perhaps using an inexpensive Palm Pilot running
a terminal program. But I decided to start with
the transmitting side since at least there was a non-
laptop option for receiving already available.

PSK31 works by sending a single tone. Data is
indicated by either doing a phase shift of the tone
by 180 degrees to indicate a digital zero or not
doing this shift to indicate a digital one. Martinez
developed a “varicode” encoding scheme for text
where each letter is represented by a string of
ones and zeros that is between 1 and 10 bits long.
Shorter strings of bits are used to represent the
more common characters. The beginning of a
transmission is indicated by a string of zeros and
the conclusion is marked by a string of ones. The
bits are timed to be sent at a rate of 31.25 bit/s.
Peter says he picked this rate because it could easily
be derived from the 8-kHz sample rate used in
many DSP systems. Since this was not going to be
my approach to the problem, I had to determine a
frequency to use that could be easily adapted to this
bit rate. I wanted the phase shift (if there was going
to be one) to occur at the point where the audio
sine wave crossed the zero point. Thus, I wanted

TAPR PSR #94 WINTER 200511

to pick a tone that would have a whole number
of cycles in 31.25 seconds. Thus, each bit period
should be 1 / 31.25 = 32 ms. Now, if I selected a
375-Hz tone, each cycle of the tone would take 2
2/3 ms., so 12 cycles would take exactly 32 ms.
So if I transmit a 375-Hz tone and shift the
phase of it (or not, depending on whether
a zero or one is sent) every 12 cycles, I’ll be
sending PSK31. Similar calculations can show
that if I transmit a 750-Hz signal and change
the phase (or not) every 24 cycles, I’ll also be
sending PSK31.

The first step down this road was to get
the PIC processor to send a sine wave.
Fortunately many people have been down
this road before me. Some have chosen
to use the microcontroller’s Pulse Width
Modulation (PWM) capabilities to do this.
In the case of the PIC that I’m using, this would
only allow me to obtain 32 different voltage levels
over the course of an audio sine wave. While this is
certainly adequate for 1200-baud packet, I decided
to start with something that would at least allow the
possibility of producing a better approximation of a
sine wave. I did this because the usual mechanism
for sending PSK31, a PC sound card, is capable of
achieving a much better approximation than this. A
packet signal only requires that the receiver discern
whether the audio frequency is 1200 or 2200 Hz.

PSK31 has to detect the phase at specific points
in time and, knowing relatively little at this point
about how PSK31 was decoded, this seemed to me
to be a more difficult task than determining the
frequency. Of course, I could be wrong about this,

and I intend to do some more experimentation to
how robust a system is needed.

Sine Wave
A second approach for generating a sine wave is

to use a “resistor ladder.” Byon Garrabrant, N6BG,
uses this approach, for example, in the TinyTrak.
Within this general approach, there are two
possibilities. Byon uses four PIC pins and connects
resistors to them such that they have values that
double when moving from pin to pin. Thus he
connects a 1k resistor to the first pin, a 2k resistor

to the next, and so on. The idea is that turning
on different combinations of pins will result in
16 different voltage levels. As I noted above, I was
concerned that this would not provide me with
enough different voltage levels to give a sufficiently

close approximation to a sine wave for PSK31.
So, using this approach I would need more
pins. It gets hard to find the appropriate
resistor values to keep doubling for more and
more pins, so I used a second approach that
was outlined in a Microchip Application Note
(AN-655 available on www.microchip.com).
This approach uses twice as many resistors (two
for each pin), but only two different values are
needed altogether. These values are readily
available in 16-pin DIP packages, so if I ever
decided to do a commercial design based on
this, I could simply use two of these DIPs (one

for each value).

I decided to use seven PIC pins, which would
produce 128 different possible voltage levels. I
settled on seven because I wanted to use a relatively
small, inexpensive PIC (one of the 18 pin models).
Eight of the pins on this chip constitute something
called “Port B.” You can set the state of all 8 pins
at one time because a single register in the chip
controls them all. Thus, only one clock cycle is
required to set all the pins. However, one of those
pins is connected internally to the receiver on the

TAPR PSR #94 WINTER 200512

chip’s serial port. I wanted to use the hardware
serial port in the chip to receive data from the Palm
Pilot (or other terminal) so that pin would not be
available for the resistor ladder. This left me with
seven pins.

The next step was to figure out how many points
along the sine wave that I wanted to set for a single
cycle. I suppose the absolute minimum would
be four, marking the top of the cycle, the bottom
and the points where the cycle crossed zero. This
way one could in theory figure out where the zero
crossing was and determine whether the cycle
continued on in the same direction (indicating
a one bit) or reversed direction and headed back
toward the top or bottom (indicating a zero bit).
However, since I really didn’t know exactly how PSK
receive systems worked, I was almost certain that
this wouldn’t be enough data. I arbitrarily picked a
value 64 for the number of points that I would use
to specify the proper voltage level.

The next step was to figure which pins to turn on
at each of the 64 points on the cycle. To do this,
you first divide the sine wave into 64 parts and
then calculate the sine for each of those points.
Remembering my high school mathematics, it is a
lot easier to do this using radians than it is using
angle degrees. An entire sine wave is 2π in length so
each 64th part is π/32. So, to start, one calculates
the sine of each of the following values: 0, π/32,

2π/32, 3π/32 and so forth up to 63π/32. Using
either a calculator, a sine table or your trusty slide
rule, this will give you a sine value that ranges for -1
(at 48π/32) to 1 (at 16π/32). The voltage produced
by the PIC and resistor ladder will not range from
-1 to 1 however, so it is necessary to rescale these
values so that the peak corresponds to the highest
voltage you can get out the ladder (where all seven
pins are turned on) and the bottom corresponds to
the lowest voltage you can get out of the PIC (where
all seven pins are turned off). Then it is necessary to
figure out the pin configuration that will produce
a value very close to the value on the re-scaled sine
wave. With 128 different voltage possibilities it
is possible to get pretty close! Of course there is a
DC bias to this signal because the PIC pins cannot
produce negative voltages, but this can be removed
by running the output signal through a capacitor. I

took a look at the resulting waveform with my
oscilloscope and it looked as follows:

Clearly, we’ve got a pretty good approximation
of a 750 Hz sine wave here. In terms of the
programming code, I created an array (called wave)
of the values that needed to be written to the Port
B pins in order go from the top of the sine wave to
the bottom. It would have been redundant to also
include the values that were necessary to go from
the bottom back to the top, since these values were
identical to the first set. What I needed to do was
simply to step through the array from start to finish.
When I reached the end, I then stepped through
the array backwards to form the other half of the
wave. I used a variable called point to keep track
of where I was in this process. Since the peak and
bottom values are both included in this array, it has
(64/2) + 1 = 33 values. The code to accomplish this
is pretty simple:

 PORTB = wave[point];

 if (point == 32) up = true;

 if (point == 0) up = false;

 if (up) point--;

 else point++;

A variable called ‘up’ keeps track of whether we
are moving up the sine wave or down. The first
line of code sets the voltage on the output. If we’ve
reached the last point of the array, it means we’ve

TAPR PSR #94 WINTER 200513

reached the bottom point on the sine wave. So ‘up’
is set to true. If we have reached the first element of
the array, it means we must have reached the peak
of the sine wave, so ‘up’ is set to false. When up is
false we move forward through the array; when ‘up’
is false, we move backward.

The only thing lacking here is the timing
mechanism. If we ran the above routine without any
delay, it would produce a frequency much higher
than the desired 750 Hz. So this code was placed in
an interrupt service routine. I arranged for the PIC
to fire an interrupt in such a way that the resulting
wave was 750 Hz.

But that doesn’t send any data, it’s just a sine
wave. In order to send a string of zeros, it is
necessary to change the phase of this signal by 180
degrees every 24 cycles. Such a signal would look
like this on an oscilloscope:

Note that this type of phase shift can be
accomplished by simply reversing the direction of
the movement through the data array at the halfway
point. The modified interrupt service routine that
does this looks something like this:

 portb= wave[point];

 if (point == 32) up = true;

 if (point == 0) up = false;

 if (point==16){

 cycle++;

 if (cycle == 48) {

 if (fl ip) up = !up;

 cycle = 0;

 }

 fl ip = true;

 }

 if (up) point--;

 else point++;

The variable ‘cycle’ counts the number of zero
crossings that have occurred since the last phase
change was made. A zero crossing occurs half way
through the array, at data point 16. Since there are
two zero crossing per sine wave cycle, we need to get
48 of them in order to complete 24 sine wave cycles
(for a data rate of 31.25 bit/s). A variable called ‘flip’
determines whether the phase shift should be made

or not. If a phase change is to be made, flipping
the ‘up’ variable causes the direction through the
array to be reversed. At that point the cycle count is
also reset to zero. I’ve designed this program so that
the default data bit sent will be a zero, so each time
through zero crossing routine the ‘flip’ variable is set
to true. If the program needs to send a one instead,
it simply changes the value of this variable to false
and the next time ‘cycle’ equals 48 no phase change
will be accomplished. The nice thing about doing
it this way is that the main program itself can have

virtually no code in it all and the unit will idle by
sending a series of zeros.

Here is a spectrogram (made with the Zakanaka
PSK31 program) of the resulting signal when the
unit idles by sending zeros. Note that the IMD

TAPR PSR #94 WINTER 200514

figure on the display is -9dB. This is pretty bad and
indicates that some additional work is needed. It is
recommended that transmitter produce IMD values
of at least -23 dB. However, the current program is a
first hack only. When I changed the timing so that
a 775 Hz wave was produced, for example, the IMD
rose to almost -23 dB. However, this fouls up the bit
rate (it’s no longer 31.25 bit/s) and so copy of the
data became pretty spotty. I’m hoping that some
tweaking of the sine wave will resolve this issue. It’s
worth noting, however, that despite the poor IMD
figure, the receiver is able to perfectly copy this
signal, even at very low signal levels.

In order to actually send data, it is necessary to
have the PIC receive data over the serial port and
encode the data in the phase shifts of the sine wave.
To hold the data that needs to be sent, I created
another array that has room for 80 bytes (called
‘text[]’). PSK31 is mostly used for keyboard-to-
keyboard QSOs. As a result, large amounts of data
do not generally need to be held in memory waiting
to be transmitted. I could have allowed a buffer
larger than 80 characters, but to do that, I would
have had to either select a much larger PIC or add
a memory chip (the latter was the approach I took
with the TNC-X project). Currently, I am using a
PIC16F628A chip for this project. It’s extremely
cheap (under $2) and it has a built-in hardware
serial port.

The data buffer is configured as circular buffer,
so when the end of the buffer is reached, it wraps
around to the beginning. Two variables are used
as pointers that indicate the next place in the
buffer that data should be added and the next
place in the buffer that data should be removed
for transmission. A third variable keeps track of
the number of bytes awaiting transmission. This
variable is not strictly necessary, but it makes the
program simpler. In the mainline of my program,
every now and then I call a routine that checks
to see if there is a byte of data on the serial port
waiting to be received and if there is, it moves it to
the next location in the buffer. The code that does
this is relatively simple:

 if (bit_test(PIR1,5)){
 text[receivepoint] = getc();

 receivepoint++;

 bytes++;

 if (receivepoint == 80)
receivepoint = 0;

 }

Bit 5 of the PIR1 register (PIR1,5) is true if there
is a byte to be processed. If so, it is placed in the
text array at the receivepoint, the receivepoint is
incremented, and the number of bytes received
(‘bytes’) is incremented. The last line wraps the end
of the buffer around to the beginning.

When there is data to send (byte>0), the character
must be translated into the Martinez varicode
system and then clocked out on the sine wave. A
lookup table handles the translation to varicode.
Two bytes are used to return the varicode value
because it is 10 bits wide. Martinez designed the
varicode so that two zeros in a row never occur
within a character itself, but two consecutive zeros
mark the end of each character. This solves the
problem of not knowing how many bits should be
transmitted (since the length of the varicode can
range from 1 to 10 bits). The program simply keeps
transmitting bits until it runs into two zeros in a
row. Then it knows that the end of the varicode
character has been reached. The code to do this
looks like this:

if (bytes > 0){

 current = translate(text[sendpoint]);

 while ((current & 1) || (lastbit)){

 lastbit = (current & 1);

 while (cycle != 47);

 if (lastbit) flip = false;

 current = current >> 1;

 while(cycle !=0);

 }//end of while

 while(cycle != 47);

 while(cycle != 0);

TAPR PSR #94 WINTER 200515

 sendpoint++;

 if (sendpoint == 80) sendpoint = 0; //don’t overrun the array

 bytes--;

}

The variable ‘sendpoint’ contains the index in the text array
that contains the byte to be sent. The variable ‘current’ holds the
varicode value of this byte, which is produced by the translate
function. ‘Lastbit’ contains the bit that was previously sent. This
allows the program to determine when two zeros in a row have
been sent. The loop that begins with the line “while ((current &
1) || (lastbit)){“ allows the program to continue to process the bits
until two zeros in a row are located. The phase shift is supposed
to occur, if needed, on the 48th zero crossing, so we pause the
program until we get to the 47th zero crossing. Obviously we
don’t want to move on to process the next bit until the current
one has been sent! If the bit to be sent is a 1, then the phase shift
does not occur (flip = false), otherwise it is left at the default value
of true.

When I constructed the varicode lookup table, I reversed the
order of the bits so that the first bit to be sent was the rightmost
bit. This allows me to simply right shift the value of ‘current’
to get to the next bit. It is necessary to wait until the last bit has
been sent (cycle = 0) before moving on to process the next bit.
PSK31 specifies that a pair of zeros should be sent in between
each character. One of these is sent by the loop that sends the
bits themselves, but the second zero is sent by the pair of while
statements after the loop. After the character and two zeros have
been sent, ‘sendpoint’ is incremented to move it to the next
character that is due to be sent and if necessary this value wraps

around to the beginning of the array. Finally, since a byte has
been sent, we decrement the value of ‘byte’.

So far, so good. The transmitter produces output that is
perfectly readable when routed into my PC soundcard and

decoded by Zakanaka. The only remaining problem is the
IMD figure, which clearly needs work. It may be that sine wave
needs some massaging, or it may be that I need more than
64 data points or 128 different voltage levels to produce an
adequate signal. But I think that this initial experiment shows
that transmitting PSK31 will be possible with an extremely
inexpensive PIC-based system. ###

TAPR PSR #94 WINTER 200516

Eliminating Source Routing from APRS
By Pete Loveall, AE5PL, pete@ae5pl.net

Source routing has been part of AX.25 since its
inception. It provided a low-cost method for TNC
owners to connect from point A to point B via
multiple digipeaters. At the time of the creation
of AX.25, router hardware and software were
expensive, both from a financial standpoint and
from a resource standpoint. This source routing
is one of the reasons that networks of AX.25
digipeaters have all but disappeared in the US and
much of the rest of the world.

What is source routing? Source routing is where
the originator of a packet specifies the route the
packet will take to get to the destination. This
requires the network users to know the topology of
the underlying network. It also requires the users
to adjust their paths according to their desired
destination.

Robert Bruninga, WB4APR, recognized early on
in the development of APRS that specifying specific
paths would be cumbersome, if not impossible,
for mobile and portable operations using the UI
portion of the AX.25 protocol. So the generic
aliases of RELAY, WIDE, and TRACE were created
to allow simple program-it-once-and-forget-it path
settings for the mobile and portable operator.
However, there were problems.

APRS is a protocol based on the AX.25 UI packet
type. This packet type is unconnected or broadcast.
The communication, in essence, is one-to-many.
One station’s packet is heard and decoded by
everyone that receives it. As such, APRS is designed
as a tactical form of communications providing
local area data reporting and SMS (short messaging)
capabilities. Examples of data that is reported are
position, weather, telemetry, etc. Hams, being the
experimenters that we are, immediately began
experimenting with paths to see how far we could
expand this “local” area. The result was a mess of
packets ping-ponging back and forth through the
network.

So WB4APR came up with another solution:
UI flood and UI trace. The basic concept is to
have one via represent up to seven digipeater hops.
Digipeaters implementing these n-N protocols
would check for duplicate repeats and therefore,
eliminate the ping-pong effect. Initially, this protocol
was implemented in the uidigi EPROM for the
TNC-2 and in the Kantronics KPC-3 and KPC-
3+. Unfortunately, the duplicate check algorithm
in the Kantronics TNC is buggy and only looks
at the UI flood and UI trace constructs. This
means that they still ping-pong if there are other
aliases used in conjunction with the UI flood and

UI trace constructs. The most common mobile
setting, RELAY,WIDE2-2, can cause the KPC-3+ to
digipeat the packet multiple times due to call sign
replacement of RELAY and no duplicate checking
until the WIDE2-2 is repeated.

This was usable, however, in the early
development of APRS because even large
metropolitan area APRS frequencies were not
saturated. This has changed. The APRS frequencies
in many parts of the world are saturated. A close
examination of the packets on those frequencies
shows that on average, over 90% of the packets are
from digipeaters. So it is painfully obvious that the
way to improve frequency utilization is to eliminate
unnecessary digipeats.

What are “unnecessary digipeats?” The
answer to this question lies in the base design of
APRS: “APRS is designed as a tactical form of
communications providing local area data reporting
and SMS (short messaging) capabilities.” Source
routing causes reliance on individual operators to
know what “local area” is and then to program their
radios accordingly. The “new n-N paradigm” does
nothing to address this underlying problem, makes
travel between areas more difficult for the traveler
with preprogrammed trackers, and simply gives
hams new ways to create destructive paths.

TAPR PSR #94 WINTER 200517

OK, so how do we address this problem with the
equipment that we have now? We can’t unless we
can get Kantronics to add a no-source-route option.
If that can be done per the specifications below,
then slowly but surely, source routing will disappear
from APRS and it will become a usable protocol
again. The digipeater specification in this paper is
easily implemented in a TNC-2 EPROM as well as
with any software digipeater such as Digi-Ned and
javAPRSDigi.

The basic digipeater algorithm is as follows:

1. The digipeater repeats everything it sees directly
(no digipeated packets), stripping the entire path
away and replacing it with just the digipeater’s call
sign with the H-bit set.

2. The digipeater repeats any packets it sees
digipeated by digipeaters on its “ok” list. This allows
remote areas to make it into the “metro” LAN
as deemed proper by the digipeater sysop. The
digipeater will modify the path by simply appending
its call with the H-bit set after the “ok” list digipeater
call.

RELAY can be on the “ok” list allowing people
to set up low-level RELAY alias digipeaters. Packets
with RELAY in the path would only be digipeated if
RELAY is in the first position and no place else.

3. The digipeater does full dupe-checking (CRC
or checksum) based on from call, unproto, I field

length, I field data. The digipeater will not digipeat
any packet where its call sign appears before or
including the call with the H-bit set in the path. The
depth of this dupe check would only need to be
about 30 packets long.

This is a very simple algorithm. The decision
of “what makes up the local area” would now lie
in the hands of the wide-area digipeater sysops.
The users could still use a path, for instance, of
RELAY,WIDE2-2, for areas not covered by such a
digipeater yet they would be properly digipeated in
areas where these types of digipeaters would exist.
For simplicity sake, let’s call these digipeaters UI no-
source digipeaters. One of the biggest benefits to the
UI no-source digipeater: no user ever needs to know
the network topology again. The digipeater sysops
take care of this just as the Internet service providers
make it so no user of the Internet needs to know
the actual network topology.

What would this mean to an area like the
DFW Metroplex (north Texas, USA) where the
frequency is saturated? The Collin County wide-area
digipeater would digipeat anything it hears directly
or directly digipeated by the wide-area digipeater
in the southwest portion of the county (we have
big counties). Tarrant County wide-area digipeater
would only digipeat what it hears directly. Etc. etc.
etc. All of a sudden, we go from 150 to 200 stations
competing for the frequency down to 10 to 20

stations competing for the frequency.

What about when we “need” to communicate
farther? There are two options:

1. APRS-IS - APRS-IS IGates provide inter-LAN
connectivity worldwide, nationwide, statewide, and
area-wide. This is the most available option and
most usable on a day-to-day basis.

2. In an emergency where APRS-IS might not be
locally available, the digipeater sysops modify their
“ok” lists. This requires no action by the individual
users (important during an emergency) and reduces
the number of changes implemented to an absolute
minimum.

It is interesting to note that APRS-IS has always
been free of source routing, even though some have
tried to get implemented different source-routing
variations. It has been important to the integrity
and usability of APRS-IS that it does not implement
any type of source routing.

This paper is designed to provoke thought, not as
an answer to all of the source-routing ills of APRS. I
am sure there are modifications and tweaks that can
be done. However, this is a start towards simplifying
the use of APRS for everyone while making it more
usable everywhere per its original intent.

###

TAPR PSR #94 WINTER 200518

Inexpensive GPS25 Offered
By John Koster, W9DDD, w9ddd@tapr.org

Garmin has offered TAPR the opportunity of
selling one of their products, the GDL-47, at an
especially attractive price. The Garmin GDL-47 is a
small plastic box that contains a GPS25LVC and an
associated embedded processor board.

There is no documentation available for the
GDL-47 itself, however, for the price, you can pull
out the GPS-25LVC and throw the rest away. The
GPS-25LVC is well documented and is very similar
to the GPS-25LVS that TAPR has sold for a number
of years.

The difference between the GPS-25LVS and GPS-
25LVC is the serial ports. The LVS meets RS-232
specifications; the LVC has CMOS logic levels.
This should not be a problem in most cases. Most
serial devices will interface with the LVC without
problem. One known exception is the 1995-vintage
IBM ThinkPad.

There is one difference between this GPS-25LVC
and the standard Garmin GPS-25LVC product.
Instead of the antenna connector being soldered
to the PCB, there is a short (1.5-in) coax pigtail
terminated in a bulkhead MCX connector.

These are new units and carry the same warranty
as our original GPS-25LVS. For general information
on the GPS-25, see the GPS-25 page at http://www.
tapr.org.

Ordering Information
The price for the GDL-47 is $72.00 US for

members of TAPR, $80.00 US for non-members
plus shipping and handling. You may order online
at http://www.tapr.org.

###

TAPR PSR #94 WINTER 200519

Entire Contents Copyright © 2004 by TAPR. Unless
otherwise indicated, explicit permission is granted to reproduce
any materials appearing herein for non-commercial Amateur
Radio publications providing that credit is given to both the
author and TAPR, along with the TAPR phone number – 972-
671-TAPR (8277). Other reproduction is prohibited without
written permission from TAPR

Opinions expressed are those of the authors and not necessarily
those of TAPR, the TAPR Board of Directors, TAPR Officers,
or the Editor. Acceptance of advertising does not constitute
endorsement by TAPR, of the products advertised.

Postmaster: Send address changes to TAPR, P. O. Box 852754,
Richardson, TX 75085-2754. Packet Status Register is published
quarterly by TAPR, 8987-309 East Tanque Verde Road #337,
Tucson, Arizona 95749-9399 USA. Membership in TAPR,
which supports the electronic publication of the Packet Status
Register, is $20.00 per year payable in US funds.

Submission Guidelines

TAPR is always interested in receiving information and articles
for publication. If you have an idea for an article you would like
to see, or you or someone you know is doing something that
would interest TAPR, please contact the editor (wa1lou@tapr.
org) so that your work can be shared with the Amateur Radio
community. If you feel uncomfortable or otherwise unable to
write an article yourself, please contact the editor for assistance.
Preferred format for articles is plain ASCII text (Microsoft Word
is acceptable). Preferred graphic formats are PS/EPS/TIFF
(diagrams, black and white photographs), or TIFF/JPEG/GIF
(color photographs). Please submit graphics at a minimum of 300
DPI.

Production / Distribution:

Packet Status Register is exported as Adobe Acrobat version 5 and
distributed electronically at www.tapr.org

PSR Packet Status Register Editor:

 Stan Horzepa, WA1LOU
 One Glen Avenue, Wolcott, CT 06716-1442 USA
 phone 203-879-1348
 e-mail wa1lou@tapr.org

Packet Status Register

#94 Winter 2005, ISSN: 1052-3626

Published by
 TAPR
 8987-309 East Tanque Verde Road #337
 Tucson, AZ 95749-9399 USA
 phone 972-671-TAPR (8277)
 fax: 972-671-8716
 e-mail tapr@tapr.org
 URL www.tapr.org
 TAPR Office Hours
 Monday – Friday, 9 AM – 5 PM Central Time

TAPR is a community that provides leadership and resources to
radio amateurs for the purpose of advancing the radio art.

TAPR Officers:

President: John Ackermann, N8UR, n8ur@tapr.org

Vice President: Steve Bible, N7HPR, n7hpr@tapr.org

Secretary: Stan Horzepa, WA1LOU, 2005, wa1lou@tapr.org

Treasurer: Tom Holmes, N8ZM, n8zm@tapr.org

TAPR Board of Directors:

Board Member, Call Sign, Term Expires, e-mail address

John Ackermann, N8UR, 2007, n8ur@tapr.org

Steve Bible, N7HPR, 2005, n7hpr@tapr.org

Stan Horzepa, WA1LOU, 2005, wa1lou@tapr.org

John Koster, W9DDD, 2006, w9ddd@tapr.org

Brad Noblet, WA8WDQ, 2006, wa8wdq@tapr.org

Darryl Smith, VK2TDS, 2005, vk2tds@tapr.org

Steve Stroh, N8GNJ, 2006, n8gnj@tapr.org

Dave Toth, VE3GYQ, 2007, ve3gyq@tapr.org

Bill Vodall, WA7NWP, 2007, wa7nwp@tapr.org

TAPR is a not-for-profit scientific research and development
corporation [Section 501(c)(3) of the US tax code]. Contributions
are deductible to the extent allowed by US tax laws. TAPR is
chartered in the State of Arizona for the purpose of designing
and developing new systems for digital radio communication in
the Amateur Radio Service, and for disseminating information
required, during, and obtained from such research.

Item Price Member
Price Qty Total Kit

Points
TAPR MEMBERSHIP

New $20.00 0
Renewal, Enter Membership Number here: $20.00 0

KITS
DSP-10 2-Meter Transceiver $329.00 $299.00 56
KK7P DSPx DSP Module $99.00 $99.00 16
KK7P DSP10 Adapter Kit $39.00 $39.00 16
PIC-E(ncoder) $65.00 $58.50 16
Motorola EVM56002 Interface $150.00 $135.00 16
Compact FlashCard Adapter (FlashCard not included) $49.00 $39.00 16
DAS (DTMF Accessory Squelch) (as seen in December 1995 QST) $68.00 $61.20 8
Bit Regenerator (for regenerative repeater operation) $10.00 $9.00 1
Clock Option (for regenerative repeater operation) $5.00 $4.50 1
PK-232 Modem Disconnect (to simplify external modem connection) $20.00 $18.00 2
PK-232MBX Installation Kit (for 9600-bit/s modem installation) $20.00 $18.00 2
XR2211 DCD Modification $20.00 $18.00 2
State Machine DCD Modification $20.00 $18.00 2
State Machine DCD Modification with Internal Clock (for KPC-2) $25.00 $22.50 2

FIRMWARE
TNC2 Version 1.1.9 with KISS EPROM (includes command booklet) $15.00 $13.50 4
TNC2 Version 1.1.9 command booklet $8.00 $7.20 2
TNC2 WA8DED EPROM (ARES/Data standard 8-connection version) $12.00 $10.80 2
TNC1 WA8DED EPROM $12.00 $10.80 2
TNC2 KISS EPROM $12.00 $10.80 2
TNC1 KISS EPROM $12.00 $10.80 2
PK-87 WA8DED EPROM $12.00 $10.80 2
TrackBox EPROM $15.00 $15.00 2
MX-614 Modem IC $8.00 $8.00 2

PUBLICATIONS
Digital Communications Conference (DCC) Proceedings
2002 DCC No. 21 (printed copy) $20.00 $18.00 8
2001 DCC No. 20 (printed copy) $10.00 $9.00 8
2000 DCC No. 19 (printed copy) $15.00 $13.50 8
1999 DCC No. 18 (printed copy) $15.00 $13.50 8
1998-2000 DCC Nos. 17-19 (CD & available printed copies) $50.00 $45.00 4
1998-2000 DCC Nos. 17-19 (CD only) $33.00 $30.00 4
1992-1997 DCC Nos. 11-16 (CD & available printed copies) $33.00 $30.00 4
1981-1991 DCC Nos. 1-10 (CD & available printed copies) $33.00 $30.00 4
Earlier DCC Proceedings (printed copies):
Circle desired nos.: 1-4 5 6 7 8 9 $6.00 ea. $5.40 ea. 8
Circle desired nos.: 10 11 12 13 14 15 16 17 $6.00 ea. $5.40 ea. 8
TAPR Spread Spectrum Update $18.00 $15.30 16
TAPR Software Library CD $20.00 $18.00 4
Wireless Digital Communications $39.99 $36.00 28
Packet Radio: What? Why? How? $12.00 $10.80 8
BBS SYSOP Guide $9.00 $8.10 8
Packet Status Register Vo. 1 (Nos. 1-17, 1982-85) $20.00 $18.00 16
Packet Status Register Vo. 2 (Nos. 18-36, 1986-89) $20.00 $18.00 16
Packet Status Register Vo. 3 (Nos. 37-52, 1990-93) $20.00 $18.00 16
Packet Status Register Vo. 4 (Nos. 53-68, 1993-97) $35.00 $31.50 16

OTHER
TAPR Badge with Name and Call Sign $10.00 $10.00 0
TAPR 11-oz. Coffee Mug $11.00 $10.00 0

GPS EQUIPMENT
TAC-32 Software Registration $55.00 $55.00 0
Garmin GPS-20/25 Interface/Power Kit $40.00 $36.00 8
Garmin GPS-20/25 Data Cable $15.00 $15.00 2
Garmin GA-27 GPS Antenna (w/MCX conn., mag. & suction mounts) $75.00 $67.50 8
Oncore GT+ GPS $149.00 $129.00 28
Motorola Antenna 97 (w/MCX connector and magnetic mount) $30.00 $27.00 8
MCX Right-Angle Connector with Coaxial Pigtail $15.00 $15.00 2

SUB-TOTAL

SALES TAX (TEXAS RESIDENTS ONLY, 8.25%)

SHIPPING:

TOTAL ORDER AMOUNT

TAPR Business Office
P.O. Box 852754
Richardson, TX 75085-2754
Phone (972) 671-8277
Fax (972) 671-8716
E-mail tapr@tapr.org
Internet www.tapr.org

Check Enclosed _ or Charge My Credit Card: VISA _MasterCard _
Credit Card Account Number____________________________ Expiration Date___/___/___

Signature__

Name__ Call Sign_________________

Street Address__

City – State – ZIP Code_______________________________________ Country___________

Phone Number__________________ E-Mail Address_________________________________

TAPR
Order
Form

SHIPPING:
1-7 Kit Points = $6
8-15 Kit Points = $7
16-27 Kit Points = $8
28-54 Kit Points = $9
55 or More Points, Contact
TAPR

