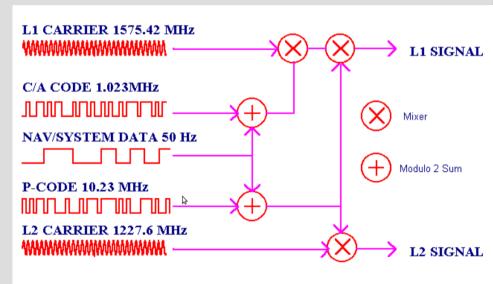

Timing Performance of a New Generation of GNSS Receivers


GNSS for Precision Frequency and Timing

- "Board level" GPS receivers have offered a pulse-per-second ("PPS") output for many years
- Even old receivers can provide accuracy within 100 nanoseconds; toward 10 ns with a lot of effort
- Useful as reference for GPS disciplined oscillator
 - But GPS PPS is "noisy" in the short term; it has second-to-second jitter worse than a local crystal oscillator
 - More on that in my other presentation

What's Changed?

- New devices incrementally better
- The big news: affordable dual-freq receivers
 - Used to cost \$\$\$\$
 - Compensate for ionospheric factors
 - Use higher-resolution codes
 - Allow raw phase output
- ZED-F9 units <\$200
- How does this affect timing performance?

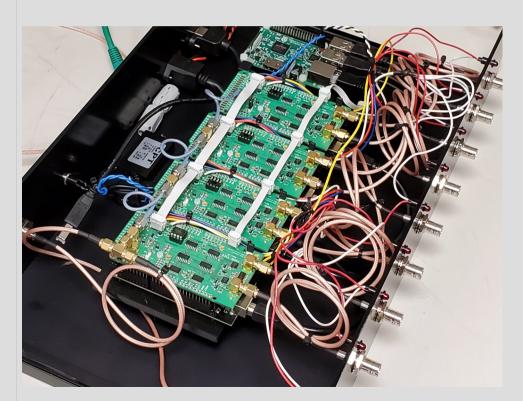
GPS SATELLITE SIGNALS

Time to Test!

 Thanks to the HamSci consortium, I was able to get my hands on several current u-blox receivers:*

Model	Features
LEA-M8F	L1, frequency and time sync, disciplined oscillator, RAWX, no qErr
NEO-M8N	L1, navigation, no qErr, no RAWX, no 0D
NEO-M8P	L1, positioning, qErr, RAWX, RTK engine
NEO-M8T	L1, timing, qErr, RAWX, no high-precision llh output
NEO-M9N	L1, navigation, no qErr, no RAWX, no 0D
ZED-F9P	L1/L2, positioning, qErr, RAWX, RTK engine
ZED-F9T	L1/L2, timing, qErr, RAWX, no high-precision Ilh output

*Support to this project from NSF Grants AGS-2002278, AGS-1932997, and AGS-1932972 is gratefully acknowledged.



The Test Plan

- Compare the PPS outputs (which u-blox calls "TIMEPULSE" outputs) from all receivers against atomic clock
- Measure all receivers simultaneously, using the same antenna, to allow direct comparison
- Measure for several days to get long-term data
- Do additional runs targeting specific capabilities/options

Step 0: Build the Test Equipment

- About six months spent designing/building/coding the "multi-TICC" to enable the testing
 - 4 TICC* counters in a box, linked to a common timebase and computer logging system
 - Allows measuring 8 inputs simultaneously with 60 ps resolution
 - See:

https://tapr.wpengine.com/tapr-file-area/timefreq/multi-TICC_App_Note_2020-01.pdf

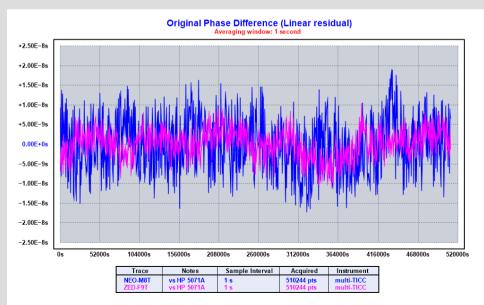
* https://tapr.org/product/tapr-ticc/

Step 1: Capture Data

- Receivers set to default values except:
 - Set to "0D" or "Timing" mode where applicable
 - Fixed location set to surveyed antenna position where applicable
- Receivers connected to common antenna through splitters
- TIMEPULSE outputs connected to multi-TICC inputs
- 10 MHz from HP 5071A cesium standard to multi-TICC reference input
- multi-TICC output logged to computer
- Collected PPS data for just under 6 days (510K samples per receiver) and analyzed with "TimeLab" software

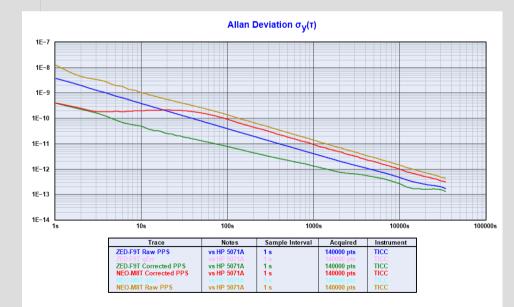
Overview of Results

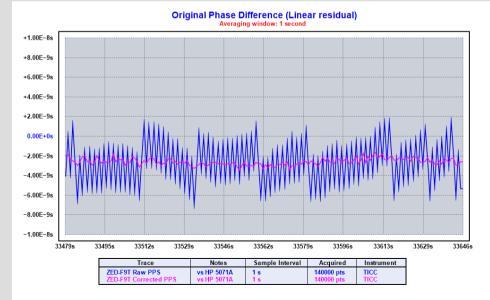
• Overview shows two distinct groups, but differences are hidden in the noise, so let's look at each group separately


Receiver	ADEV @ 1 Sec	ADEV @ 10K Sec
LEA-M8F	4.07x10 ⁻⁹	6.20x10 ⁻¹³
NEO-M8N	9.03x10 ⁻⁹	1.45x10 ⁻¹²
NEO-M8P	7.71x10 ⁻⁹	1.12x10 ⁻¹²
NEO-M8T	9.99x10 ⁻⁹	1.12x10 ⁻¹²
NEO-M9N	9.02x10 ⁻⁹	1.10x10 ⁻¹²
ZED-F9P	3.85x10 ⁻⁹	5.24x10 ⁻¹³
ZED-F9T	4.13x10 ⁻⁹	4.97x10 ⁻¹³

The ZED-F9 Receivers (or, "Why We're Here Today")

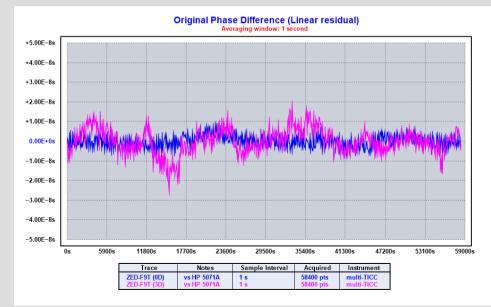
- "P" model has RTK engine; "T" model has extra I/O and a bit lower cost (in quantity)
- Half an order of magnitude better than "8" series!





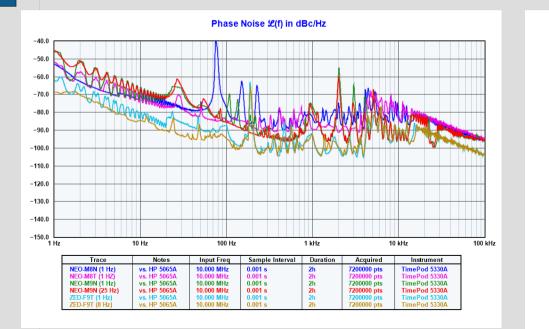
Questions Answered: Does Sawtooth Correction Work?

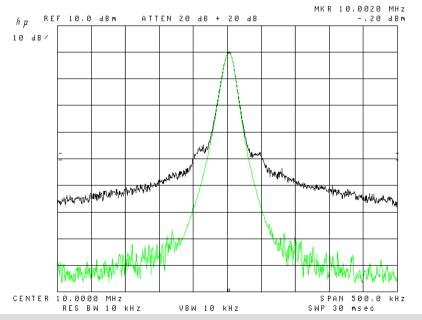
• Yes



Questions Answered: Is "0D" Important for Timekeeping?

• Yes





Questions Answered: 10 MHZ TIMEPULSE as an RF Source?

• No

Autonomous Positioning Performance

- 12-hour test logging position data from common antenna
- "CEP" = Circular Error, "EP" = Elevation Error Probabilities

Receiver	CEP – 50%	CEP – 95%	CEP – 99%	EP – 50%
LEA-M8F	1.034	2.900	3.735	1.743
NEO-M8N	1.090	2.302	3.004	1.976
NEO-M8P	1.117	2.319	2.607	1.520
NEO-M8T	1.264	2.271	3.441	1.777
NEO-M9N	0.820	1.684	1.944	1.159
ZED-F9P	0.559	1.449	1.633	0.817
ZED-F9T	1.370	2.457	3.142	1.928

Positioning Performance

- "P" receivers have built-in RTK correction processing engine
 - Provide source of correction data, get mm-level data out
- ~8 hour data collection using Ohio DOT reference station network for corrections
- RTK certainly works
 - Why single-freq M8P performance almost equals dual-freq F9P is unknown; M8P is performing better than it should!
 - Consider these results preliminary

Receiver	CEP – 50%	CEP – 95%	CEP – 99%	EP – 50%
NEO-M8P	0.010	0.029	0.035	0.021
ZED-F9P	0.013	0.025	0.033	0.016


Post-Processing Performance

- Collected data from NEO-M8P (GPS), ZED-F9P (GPS), ZED-F9T (GPS+GLONASS) as well as survey-grade unit
- Sent off for post-processing*
- Conclusions:
 - M8P gets to around ¹/₂ meter
 - Dual-freq gets to a handful of mm and competes with survey rx
 - Using GPS+GLONASS improves ZED-F9 results vs. GPS only

	NetRS (GPS)		NEO-M8P (GPS)		ZED-F9P (GPS)		ZED-F9T (GPS+GLONASS)	
	24 Hour	Sigma (95%)	24 Hour	Sigma (95%)	24 Hour	Sigma (95%)	24 Hour	Sigma (95%)
LAT ITRF2014	39 xx 42.67100	0.0068	39 xx 42.66852	0.3601	39 xx 42.67067	0.0090	39 xx 42.67086	0.0048
LON ITRF2014 EL HGT ITRF2014	-84 xx 41.53109 247.101		-84 xx 41.53533 247.21		-84 xx 41.53164 247.1254		-84 xx 41.53226 247.1548	

* https://webapp.geod.nrcan.gc.ca/geod/tools-outils/ppp.php

Timing Performance of a New Generation of GNSS Receivers

