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Abstract – The wsprnet.org database provides a very 
good service for collecting, and making available, some 
2.4 million spots from about 2500 reporters on a typical 
day. Its web page query tool, and those of third parties 
that scrape data from wsprnet.org, fulfill the needs of 
very many users. However, for users seeking to glean 
additional information from their own WSPR spots, or 
from those of a wider community, the tools provided by 
a relational database and a data visualization package 
become necessary. This paper outlines the rationale 
behind the WsprDaemon time series database, our initial 
experience with Influx as the database, and the reasons 
for moving to TimescaleDB. The system's architecture is 
described, highlighting resilient data gathering with user 
and server caches, an ability to handle delayed spot 
reporting, and a close coupling to Grafana as the 
visualization package. Three examples of Grafana 
Dashboards illustrate this approach and the utility of the 
results in providing users with a richer set of graphics to 
help them understand what WSPR spots tell them about 
propagation and their own installations and noise 
environment. 
 

1. INTRODUCTION 
Since the introduction of the Weak Signal Propagation 
Reporter (WSPR) protocol in 2008 reception reports 
have been uploaded to wsprnet.org. Originally written 
by Bruce Walker, W1BW, and now maintained by a 
small team of volunteers, wsprnet.org provides a simple, 
web-based interface of pull-down options to query its 
SQL database. There is also the 'old database' interface 
at wsprnet.org/olddb that supports web-page queries 
and 'scraping' using curl, a command line tool for data 
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transfer to or from web pages (curl.haxx.se). In 
addition, there is an invitation-only Application 
Programming Interface (API) by the wsprnet 
administrator Gary McMeekin, W1GJM that returns 
JavaScript Object Notation (JSON) data [1].  

Writing in August 2010 Taylor and Walker reported 
that the WSPR database comprised 32 million spots, 
with 300-500 stations reporting 50,000 to 100,000 spots 
daily [2]. It is a tribute to the early work, the on-going 
support and investments in hardware that wsprnet.org 
provides an effective central reporting database for some 
2500 reporting stations handling 2.4 million spots a day. 
Harder to quantify is the load on the database from its 
web-page users and from several third-party scraper and 
API applications. 

Third-party applications come in several forms. There 
are near-real time [3], daily [4] and monthly [5] ranked 
lists, a map with simple pull-down options [6], suites of 
tables, charts and maps as a website [7], an app for 
mobile devices [8], to a comprehensive graphing tool 
drawing on its own copy of the full wsprnet.org database 
[9]. 

Given wsprnet.org itself and the plethora of third-
party applications, why did we see the need for a 
separate database and graphing tool? There were several 
drivers, in part cascading as the initial project proved 
useful: 
1.  Author Robinett's concept of a robust and reliable 

reporting tool for WSPR spots from the multi-
channel KiwiSDR (www.kiwisdr.com) led to 
him writing a Linux application, WsprDaemon 
(wsprdaemon.org and [10]), now with over 40 
users. 

2.  Recognizing that the KiwiSDR was capable of 
estimating noise level at its input author Griffiths 
contributed an investigation of noise estimation at 
the same time and on the same frequencies as 
receiving WSPR spots [11]. As that data could not 
be reported to wsprnet.org a separate database was 
needed. Tommy Nourse, KI6NKO, suggested using 
Influx, a database specifically designed for time 
series data, with Grafana as the graphical display.  

3.  Following encouragement from several members of 
the HamSci community (hamsci.org) we added 
spots from WsprDaemon users to an Influx 
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(www.influxdata.com) database, and as its 
usefulness became apparent we added spots for all 
reporters, obtained from wsprnet.org. 

4. Over time, an ambition grew to be able to offload 
some of the third party data scraping from 
wsprnet.org by providing a secondary source of 
reported spots. 

The remainder of this paper is organized as follows: 
section 2 introduces time series databases, summarizes 
our experience of Influx, and the reasons for our move to 
TimescaleDB (www.timescale.com); section 3 
describes our TimescaleDB implementation, its 
capability and current user interfaces; section 4 describes 
how Grafana links to TimebaseDB and the features 
available; section 5 provides examples of insights into 
propagation and station performance that can be 
obtained from different graphical representations of the 
basic and derived data, section 6 shares some thoughts 
for future development of WsprDaemon, the database 
and graphical visualization. 

2. TIME SERIES DATABASES: INFLUX AND 
TIMESCALEDB 

Time series databases have emerged as a class of tools 
that deliver performance improvements over traditional 
databases by recognizing several characteristics of many 
time series. These include many insert operations, often 
in batches, and often timely, that is, few inserts are 
delayed, updates to existing inserts are rare, and queries 
often specify a time interval [11]. Time series databases 
'chunk' the data in time, keeping the most recent data in 
memory. This facilitates fast response times for simple 
queries on recent data but requires paging between 
memory and disk for data in older chunks, slowing the 
response. In addition to Influx and TimescaleDB others 
include Clickhouse, OpenTSDB, Riak TS, and Gorilla. 
As database novices we were steered toward Influx. 

2.1 Influx time series database 
Influx is a purpose-built time series database with its own 
query language, similar to SQL. Using its excellent 
documentation [12] our database was set up in hours. 
The downside was that it took us time and accumulated 
experience to become aware of the limitations of Influx's 
approach for the characteristics of the WSPR dataset. 

Briefly, Influx creates a 'measurement' (similar to an 
SQL table) with indexed tags (character fields such as 
Callsigns and Locators, but also Band, as only tags can 
be queried) and non-indexed fields (numeric fields such 
as SNR or Drift). Data are not stored as simple rows as 
they would appear in a spreadsheet or in many databases 
but are associated with the tag sets.  

Cardinality is a term for the number of unique 

combinations of measurements, tags and fields in a 
database. As cardinality grows, Influx's response time to 
queries increases, as does its CPU and memory 
requirements. It helps that most callsigns are always 
associated with the same locator. But even so, after four 
days, with 5.8 million spots, the cardinality had reached 
over 256,000. Influx's documentation considered this 
'moderate' suggesting hardware with 4-6 cores and 8–
32GB memory. As we were running on a Digital Ocean 
Droplet with 2 cores and 4GB memory the performance 
had become unacceptable; the time taken to return the 
results of a single-user simple query to list 10,000 spots 
increased from a barely acceptable 15s to 28s.  

While we were prepared to move to higher-
performance hardware, the continued, albeit reducing, 
rise in cardinality, with no sign of reaching a stable 
value, Figure 1, led us to look for an alternative database. 
Potential users of Influx should carefully consider the 
likely cardinality and associated hardware requirements 
for their own particular requirements.  

 

2.2 Why a TimescaleDB time series database 
Further reading, our experience with Influx giving us a 
better insight into what was needed, and a readable, fair-
minded comparison of Influx and TimescaleDB [12] led 
us to TimescaleDB. TimescaleDB is an extension to the 
very well established open-source relational database 
postgreSQL (www.postgresql.org) that optimizes its 
performance with time series. It B-tree approach to 

Figure 1. An almost linear rise in the number of spots in our 
Influx database gave rise to a cardinality that was still rising 
after 7 days. The cardinality : spots slope of 0.036 after 1 
day had reduced to 0.018 after 7 days, but its continued rise 
would give unacceptable query times on the available 
hardware. 
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indexing data promised a better ability to handle the 
high cardinality inherent in WSPR data. 

Importantly, as a relational database, TimescaleDB 
enables join operations both within individual tables 
(self-join) and between tables. This feature was not 
available in v1.7 Influx that we were using. Join 
operations allow queries such as: calculate the difference 
in SNR for the same sender at the same time in the same 
band for two different reporters.  

3.  IMPLEMENTING A TIMESCALEDB DATABASE 

3.1 Data architecture overview 
The data architecture of our August 2020 
implementation is shown in Figure 2. In brief: 

1. WsprDaemon client software on the reporting 
station's computer caches spot data, to avoid 
gaps during outages. Records comprising the 
normal WSPR fields are forwarded using HTTP 
Put to wsprnet.org and an extended set by FTP 
to logs.wsprdaemon.org, including estimates of 
local noise if enabled.  

2. WsprDaemon server logs.wsprdaemon.org has 
two spots input paths: direct from WsprDaemon 

users, and from all users from wsprnet.org via its 
API every two minutes. Preprocessing adds fields 
including numeric latitude, longitude and 
azimuth at the receiver as useful variables to plot 
when visualizing data [Section 5].  

3. Spots from WsprDaemon users with additional 
fields are inserted into table wsprdaemon_spots 
and their noise data goes into table 
wsprdaemon_noise in the TimescaleDB 
database. Spots arriving via the wsprnet.org API 
go to table spots. Users connect to this database 
to query data. At current loads the server is well 
able to handle data insertion and user queries. 

4. Data is also obtained from third parties via a 
scraper or an API. Currently we obtain the 
three-hourly geomagnetic disturbance index Kp 
from the US Space Weather Prediction Center. 

5. As this data arrives at the server it is cached 
before being mirrored to a backup server 
logs1.wsprdaemon.org and inserted into a 
replica TimebaseDB database.  

3.2 Hardware outline 
High availability, sufficient memory to hold at least one 

Figure 2. Diagram showing the data architecture of WsprDaemon, its data input pathways, its resilient design in having a server 
with a TimesacleDB database mirror data to a separate backup. 
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month of data in memory, appropriate processing power 
and good Internet connection are key requirements for 
the server logs.wsprdaemon.org. Currently these 
requirements are met with an owned Dell 8-core 192GB 
memory, 550GB SSD and 5TB disk machine. To ensure 
resilience against power outages and to provide a Gb 
Internet connection the server is collocated at a 
Hurricane Electric data center. A backup machine 
provides a hot-standby facility. 

3.3 TimescaledDB installation and database set-up 
Open Source, Community and paid-for Enterprise 
versions of TimebaseDB are available for a range of 
operating systems, including Windows, MacOS and 
several Linux distributions [14]. Installation was 
straightforward, edits to the configuration file were 
necessary to allow, among others, remote connections, 
access by password, and to set time zone to UTC. Port 
5432 needs to be open on the router/firewall(s).  

Initial set-up of a database is well described in the 
TimescaleDB documentation, although new SQL users 
will find the tutorial and examples pages at 
www.postgresqltutorial.com very helpful. The 
TimescaleDB extension need only be loaded once. An 
interactive program, psql, enables effective 
communication with the database for administrative 
tasks and to download the results of queries as csv files. 

For our initial database we migrated WSPR data from 
Influx using a purpose-coded tool, Outflux [15]. If one is 
migrating to TimescaleDB from another postgreSQL 
database use the psql command pg_dump. 

On creation, database tables will simply be 

postgreSQL tables. The create_hypertable TimescaleDB 
extension converts a postgreSQL table to a hypertable - 
these are interlinked 'chunk' tables, where a chunk covers 
a user-set time period. The choice of duration for a 
chunk needs to consider the incoming average data rate 
(say in MB/day), the size of the associated index, and the 
free memory available across all of the active hypertables 
and databases on the machine. It is advisable that all 
active chunks fit into 25% of memory.  

Early experience showed the spots table from 
wsprnet.org, with derived variables, grew between 370 
and 460MB/day from data, and 58 to 72MB/day from 
the index. For logs.wsprdaemon.org with 192GB 
memory we have set a conservative chunk size of 30 days 
rather than the 83 days implied by the 25% guide. This 
is to allow us to ensure that there is adequate CPU 
performance for queries spanning 30 days as our user 
base grows. 

3.4 Query response times 
There may be little value in providing examples of query 
response times without a full, detailed analysis of the load 
on the server. Nevertheless, given the minimal 
information in Figure 3, queries via third party app 
wsprd.vk7jj.com on all bands from OE9GHV for up 
to 50,000 spots over 24 hours returned 33,908 spot lines 
in 2.3 seconds, and for up to 500,000 spots over 7 days 
returned 275,784 spot lines in 13.6 seconds. The average 
time for 33 queries for all spots over the last hour for a 
variety of stations was 1.4 seconds. [Note: when preparing 
this figure logs.wsprdaemon.org was labeled WD1]. 

Figure 3. Screen shot of a pg_admin window showing statistics for the logs.wsprdaemon.org server. There are 1 to 8 active sessions; the 
Tuples in graph shows the Inserts from wsprnet.org; the Tuples out graph shows traffic from user queries. The two peaks at left were for 
queries via third party app wsprd.vk7jj.com for up to 50,000 spots over 24 hours received by OE9GHV on all bands, the queries returned 
33,908 spot lines in 2.3 seconds, the right hand peak, with over 15 million Tuples out was for a query for all spots (275,784) from 
OE9GHV for 7 days. 
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4. GRAFANA VISUALISATION WITH TIMESCALEDB 
Grafana (grafana.com) is a multi-platform open source 
data visualization package with extensive support for 
connections to numerous databases including 
postgreSQL and TimescaleDB. In its terminology the 
user creates a 'Dashboard' comprising one or more 
'panels', a panel may be a time series graph, a simple 
gauge, a digital readout, a map, or a host of other data 
representations. In this paper we focus on using Grafana 
time series graphs with WSPR data from our 
TimescaleDB database. 

We have set up a few read-only example Dashboards 
at logs.wsprdaemon.org:3000 with access inform-
ation available at wsprdaemon.org/grafana.html. 
However, users may want to install Grafana on their 
own machine to create custom Dashboards. Using Share 
–> Export options the json code for our Dashboards can 
be saved and imported into a user's local Grafana 
instance as starting templates for their own versions. 

4.1 Setting up Dashboards and panels 
In summary, the steps to creating a data visualization 

site after installing Grafana are: 
•  Add a data source: there are currently pull-down 

options for over 20 sources, including database 
types, cloud repositories, and enterprise plug-ins. A 
single Dashboard may draw on data from one or 
more of these sources. Adding a data source 

requires connection details: host IP address, userid, 
password, SSL mode, any connection time limits 
etc.  

•  Build a Dashboard: Starting with a new blank panel 
we add one or more queries if, as with 
TimescaleDB, the source is a database. After 
selecting the data source from its known list 
Grafana provides a comprehensive skeleton SQL 
Query Builder that the user modifies by deleting 
unwanted parts, using pull-down options to add 
specifics, e.g. to select SNR or distance as variables 
to plot, whether to use aggregate functions, e.g. to 
count the number of spots received in a time 
interval, or to form an average. For simple queries 
the Query Builder is sufficient; more complex 
queries can be written directly in SQL. 

•  Choose and customize visualization: Simple graphs 
of time series are excellent for many variables, but 
other Grafana options are very useful. Heat maps 
show the value of a derived quantity, e.g. a count of 
instances, as a color (effectively a z-axis) within a 
time period (a time bucket) and over a range of the 
y-axis variable (bins). Examples of heat maps 
include the number of spots in 20-minute time 
buckets and 1000km range bins, or in 15  bins of 
azimuth at the receiver. 

5.  INSIGHTS INTO PROPAGATION AND STATION 

Figure 4. Grafana Dashboard that enables a user to compare distance statistics in 10 minute intervals (lower quartile, median, upper 
quartile) for two receivers and two bands. As in this example, a comparison may be between two different receivers on the same band, 
but can also be used for the same receiver on two different bands. Pull down options at top right set the time span and the user can save 
or export the plot, or save the data in csv or json formats. 



182

PERFORMANCE 
In this section we show three graphical examples to 
illustrate the value of bringing together a time series 
database and Grafana visualization. A common feature 
of most of these Grafana Dashboards is that by using 
template variables the user can easily select, using pull-
down options, the stations, bands etc. to plot.  

5.1 Insights into propagation - simple time series plots 
Figure 4 shows a Dashboard that enables us to look at 
simple statistics with time of the distances between 
receiver and transmitters for two receivers and for two 
bands. The statistics here are the lower and upper 
quartiles and the median. The two receivers may be the 
same, but the bands may differ, or, as in this example, 
we can compare two different receiver stations on the 
same band. 

In this example on 40m, AI6VN/KH6 is on Maui, 

Hawaii, while KK6PR is in central Oregon. For 
AI6VN/KH6 the lower quartile represents the distance 
to the west coast of N. America. Propagation over that 
path is almost continuous, except for gaps between 2000 
and 0000UTC. About 0200UTC the band opens to the 
US South- then Mid-West (upper quartile and mean 
very close), followed very soon by a step in the upper 
quartile from propagation extending to the Eastern 
Seaboard. About 1300UTC the path to the Eastern 
Seaboard closes. The hours until about 1800UTC 
(spanning sunrise) show more day-to-day variability: on 
29 July propagation was open to Australia (11,000km), 
but not on 30 or 31 July, the path to South Africa 
(19,000km) opened each day, albeit very briefly on the 
31st. 

For KK6PR the overall pattern is similar, but the 
band starts to open to the Eastern Seaboard 2-3 hours 

Figure 5. An example Grafana Dashboard that combines simple time series graphics from three sources with heatmap representation 
of data. The data spans four days for 40m from KA7OEI-1, a KiwiSDR at the Northern Utah SDR site. The top panel shows the 
number of spots received in 20-minute intervals in green, with three-hourly estimates of the planetary geomagnetic disturbance index 
Kp in yellow. The second panel is a heatmap of the number of spots in 20-minute intervals within 1000km distance bins out to 
20,000km. The third panel shows azimuth at the receiver in 15  and 20 minute bins. The bottom panel shows the c2_FFT and 
RMS noise estimates with a distinct diurnal pattern. 
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earlier, at just before 0000UTC, and it is open for 
longer. The increased upper quartile distances spanning 
sunrise were from path openings to Japan, New Zealand 
and Australia. 

While undoubtedly useful, these simple graphs require 
the user to consult listings of spots received to fully 
interpret the paths involved. Presenting the data as heat 
maps of distance and azimuth at the receiver helps 
(admittedly with ambiguity over short and long path). 

5.2 Displaying other data and heat maps alongside WSPR spots  
Figure 5 is an example Grafana Dashboard combining 

simple time series graphics from three sources with heat 
maps. The data spans four days for 40m from KA7OEI-
1, a KiwiSDR at the Northern Utah SDR site [16]. The 
top panel shows the number of spots received in 20-
minute intervals in green, with three-hourly estimates of 
the planetary geomagnetic disturbance index Kp in 

yellow. While there is day-to-day variation, there is a 
daily broad minimum spanning local noon. The heat 
map in the second panel shows a distinct daily 
periodicity in the number of statins received at a distance 
of 2500-4000km – from the Eastern Seaboard – an 
interpretation helped by the azimuth heat map in the 
third panel. However, reference to a list of received spots 
is still needed to check that the first evening DX is from 
South Africa, then New Zealand, followed by Australia 
and Europe. But on some days, southern European and 
North African stations appear during early evening. The 
bottom panel shows the c2_FFT and RMS noise 
estimates with a distinct diurnal pattern suggesting that, 
above the troughs, the noise was being propagated in 
rather than from a local source. 

5.3 Visualizing derived data - SNR difference 
As postgreSQL, the foundation of TimescaleDB, is a 

Figure 6. As postgreSQL is a relational database that allows self-joins a query in Grafana can return data derived from one or more 
receivers. This Dashboard shows the SNR difference between G3ZIL and G4HZX on 40m, for spots from the same sender at the 
same time, as a time series scatter plot in the top panel, as median and lower and upper quartiles in the second panel and as a heatmap 
in the third. Heat maps of spot distance and azimuth at G3ZIL help interpret the SNR difference. 
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relational database it is easy to use join queries, across 
different tables and databases but also within a table (a 
self-join). Grafana's query builder does not have 
sufficient options to construct a self-join but it is 
straightforward to write the necessary postgreSQL 
queries. Figure 6 shows a Dashboard designed to derive 
and plot the SNR difference between any two selected 
receivers where they spotted the same sender at the same 
time on the same band. The SNR difference is shown as 
a scatterplot, as median, lower and upper quartile in 20-
minute intervals and as a heat map. Heat maps of the 
spot distance and azimuth at the first receiver are added 
to help interpretation. 

In this example G3ZIL and G4HZX are 110km apart, 
G3ZIL generally has higher local noise than G4HZX, 
and the antenna is a vertical at G4HZX and a pair of 
low inverted V dipoles at G3ZIL. The statistics and heat 
map panels are the most useful for seeing the SNR 
differences. Clearly, a snapshot over a few minutes or 
even a few hours would not convey the complexity of the 
changes in SNR with time.  

While there are undoubtedly short term variations 
there are clear diurnal (daily) variations as well as longer-
term changes. Comparing the SNR difference and 
distance heat maps show higher SNR at G4HZX during 
hours of darkness with 40m open to the west, to North 
America, as seen in the azimuth heat map. The vertical 
out-performs the low dipoles for signals with low arrival 
angles. Conversely, spanning local noon, the low dipoles 
give a higher SNR than the vertical for signals from 0–
1000km arriving at higher angles. 

6. CONCLUSION 
Implementing a database of our own has reinforced our 
opinion that wsprnet.org does a very good job at data 
collection and fulfilling simple web-based queries. With 
wsprnet.org as the primary data collector we have shown 
how a time series database and a visualization package 
can provide a richer set of data queries and graphical 
output. 

Along the way we learnt about the strengths and 
weaknesses of time series databases. While Influx's 
documentation was excellent and a working system was 
easy to implement it took some time for its drawbacks in 
dealing with the very high cardinality of WSPR data to 
become obvious.  

TimescaleDB's design better suits WSPR data, 
although on a machine with limited memory query 
response times into 10s of seconds occur for data not in 
the current time chunk. Our affordable solution has been 
to move to a server with 192GB of memory, sufficient to 
hold 30 days of WSPR data in memory, and with 
sufficient SSD and disk storage to provide (albeit slower, 

but still online) access to older data when required. 
Grafana comes with built-in connection paths to 

TimescaleDB and other data sources. Its own 
visualization options for time series graphs and heat 
maps are an excellent starting point for examining 
WSPR spot data, as illustrated in this paper. Plug-ins 
from a growing community of third-party sources 
provide an even wider range of options such as forms of 
Hovmöller diagrams where the y-axis is hour of the day 
and the x axis time, and a range of maps. 

Finally, there is clear potential from adding non-
WSPR data. We have only scratched the surface in this 
regard, sourcing geomagnetic disturbance measurements 
from the US Space Weather Prediction Center. 
Through the means outlined in this paper we look 
forward to users making far more of the terrific resource 
that is the global WSPR community and its data. 
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