
177

Abstract – The wsprnet.org database provides a very
good service for collecting, and making available, some
2.4 million spots from about 2500 reporters on a typical
day. Its web page query tool, and those of third parties
that scrape data from wsprnet.org, fulfill the needs of
very many users. However, for users seeking to glean
additional information from their own WSPR spots, or
from those of a wider community, the tools provided by
a relational database and a data visualization package
become necessary. This paper outlines the rationale
behind the WsprDaemon time series database, our initial
experience with Influx as the database, and the reasons
for moving to TimescaleDB. The system's architecture is
described, highlighting resilient data gathering with user
and server caches, an ability to handle delayed spot
reporting, and a close coupling to Grafana as the
visualization package. Three examples of Grafana
Dashboards illustrate this approach and the utility of the
results in providing users with a richer set of graphics to
help them understand what WSPR spots tell them about
propagation and their own installations and noise
environment.

1. INTRODUCTION
Since the introduction of the Weak Signal Propagation
Reporter (WSPR) protocol in 2008 reception reports
have been uploaded to wsprnet.org. Originally written
by Bruce Walker, W1BW, and now maintained by a
small team of volunteers, wsprnet.org provides a simple,
web-based interface of pull-down options to query its
SQL database. There is also the 'old database' interface
at wsprnet.org/olddb that supports web-page queries
and 'scraping' using curl, a command line tool for data

Gwyn Griffiths is an independent amateur and citizen

scientist based in Southampton, U.K. (corresponding author e-
mail: gwyn@autonomousanalytics.com).

Rob Robinett based in Berkeley California, is CEO of TV
equipment manufacturer Mystic Video and he’s founded a
series of Silicon Valley startups. He recently “rediscovered”
amateur radio - after an absence of more than 40 years - and
he applies his software expertise to developing systems to
measure short wave radio transmission conditions.

transfer to or from web pages (curl.haxx.se). In
addition, there is an invitation-only Application
Programming Interface (API) by the wsprnet
administrator Gary McMeekin, W1GJM that returns
JavaScript Object Notation (JSON) data [1].

Writing in August 2010 Taylor and Walker reported
that the WSPR database comprised 32 million spots,
with 300-500 stations reporting 50,000 to 100,000 spots
daily [2]. It is a tribute to the early work, the on-going
support and investments in hardware that wsprnet.org
provides an effective central reporting database for some
2500 reporting stations handling 2.4 million spots a day.
Harder to quantify is the load on the database from its
web-page users and from several third-party scraper and
API applications.

Third-party applications come in several forms. There
are near-real time [3], daily [4] and monthly [5] ranked
lists, a map with simple pull-down options [6], suites of
tables, charts and maps as a website [7], an app for
mobile devices [8], to a comprehensive graphing tool
drawing on its own copy of the full wsprnet.org database
[9].

Given wsprnet.org itself and the plethora of third-
party applications, why did we see the need for a
separate database and graphing tool? There were several
drivers, in part cascading as the initial project proved
useful:
1. Author Robinett's concept of a robust and reliable

reporting tool for WSPR spots from the multi-
channel KiwiSDR (www.kiwisdr.com) led to
him writing a Linux application, WsprDaemon
(wsprdaemon.org and [10]), now with over 40
users.

2. Recognizing that the KiwiSDR was capable of
estimating noise level at its input author Griffiths
contributed an investigation of noise estimation at
the same time and on the same frequencies as
receiving WSPR spots [11]. As that data could not
be reported to wsprnet.org a separate database was
needed. Tommy Nourse, KI6NKO, suggested using
Influx, a database specifically designed for time
series data, with Grafana as the graphical display.

3. Following encouragement from several members of
the HamSci community (hamsci.org) we added
spots from WsprDaemon users to an Influx

Gwyn Griffiths, G3ZIL and Rob Robinett, AI6VN

Aids to the Presentation and Analysis of WSPR
Spots: TimescaleDB database and Grafana

178

(www.influxdata.com) database, and as its
usefulness became apparent we added spots for all
reporters, obtained from wsprnet.org.

4. Over time, an ambition grew to be able to offload
some of the third party data scraping from
wsprnet.org by providing a secondary source of
reported spots.

The remainder of this paper is organized as follows:
section 2 introduces time series databases, summarizes
our experience of Influx, and the reasons for our move to
TimescaleDB (www.timescale.com); section 3
describes our TimescaleDB implementation, its
capability and current user interfaces; section 4 describes
how Grafana links to TimebaseDB and the features
available; section 5 provides examples of insights into
propagation and station performance that can be
obtained from different graphical representations of the
basic and derived data, section 6 shares some thoughts
for future development of WsprDaemon, the database
and graphical visualization.

2. TIME SERIES DATABASES: INFLUX AND
TIMESCALEDB

Time series databases have emerged as a class of tools
that deliver performance improvements over traditional
databases by recognizing several characteristics of many
time series. These include many insert operations, often
in batches, and often timely, that is, few inserts are
delayed, updates to existing inserts are rare, and queries
often specify a time interval [11]. Time series databases
'chunk' the data in time, keeping the most recent data in
memory. This facilitates fast response times for simple
queries on recent data but requires paging between
memory and disk for data in older chunks, slowing the
response. In addition to Influx and TimescaleDB others
include Clickhouse, OpenTSDB, Riak TS, and Gorilla.
As database novices we were steered toward Influx.

2.1 Influx time series database
Influx is a purpose-built time series database with its own
query language, similar to SQL. Using its excellent
documentation [12] our database was set up in hours.
The downside was that it took us time and accumulated
experience to become aware of the limitations of Influx's
approach for the characteristics of the WSPR dataset.

Briefly, Influx creates a 'measurement' (similar to an
SQL table) with indexed tags (character fields such as
Callsigns and Locators, but also Band, as only tags can
be queried) and non-indexed fields (numeric fields such
as SNR or Drift). Data are not stored as simple rows as
they would appear in a spreadsheet or in many databases
but are associated with the tag sets.

Cardinality is a term for the number of unique

combinations of measurements, tags and fields in a
database. As cardinality grows, Influx's response time to
queries increases, as does its CPU and memory
requirements. It helps that most callsigns are always
associated with the same locator. But even so, after four
days, with 5.8 million spots, the cardinality had reached
over 256,000. Influx's documentation considered this
'moderate' suggesting hardware with 4-6 cores and 8–
32GB memory. As we were running on a Digital Ocean
Droplet with 2 cores and 4GB memory the performance
had become unacceptable; the time taken to return the
results of a single-user simple query to list 10,000 spots
increased from a barely acceptable 15s to 28s.

While we were prepared to move to higher-
performance hardware, the continued, albeit reducing,
rise in cardinality, with no sign of reaching a stable
value, Figure 1, led us to look for an alternative database.
Potential users of Influx should carefully consider the
likely cardinality and associated hardware requirements
for their own particular requirements.

2.2 Why a TimescaleDB time series database
Further reading, our experience with Influx giving us a
better insight into what was needed, and a readable, fair-
minded comparison of Influx and TimescaleDB [12] led
us to TimescaleDB. TimescaleDB is an extension to the
very well established open-source relational database
postgreSQL (www.postgresql.org) that optimizes its
performance with time series. It B-tree approach to

Figure 1. An almost linear rise in the number of spots in our
Influx database gave rise to a cardinality that was still rising
after 7 days. The cardinality : spots slope of 0.036 after 1
day had reduced to 0.018 after 7 days, but its continued rise
would give unacceptable query times on the available
hardware.

179

indexing data promised a better ability to handle the
high cardinality inherent in WSPR data.

Importantly, as a relational database, TimescaleDB
enables join operations both within individual tables
(self-join) and between tables. This feature was not
available in v1.7 Influx that we were using. Join
operations allow queries such as: calculate the difference
in SNR for the same sender at the same time in the same
band for two different reporters.

3. IMPLEMENTING A TIMESCALEDB DATABASE

3.1 Data architecture overview
The data architecture of our August 2020
implementation is shown in Figure 2. In brief:

1. WsprDaemon client software on the reporting
station's computer caches spot data, to avoid
gaps during outages. Records comprising the
normal WSPR fields are forwarded using HTTP
Put to wsprnet.org and an extended set by FTP
to logs.wsprdaemon.org, including estimates of
local noise if enabled.

2. WsprDaemon server logs.wsprdaemon.org has
two spots input paths: direct from WsprDaemon

users, and from all users from wsprnet.org via its
API every two minutes. Preprocessing adds fields
including numeric latitude, longitude and
azimuth at the receiver as useful variables to plot
when visualizing data [Section 5].

3. Spots from WsprDaemon users with additional
fields are inserted into table wsprdaemon_spots
and their noise data goes into table
wsprdaemon_noise in the TimescaleDB
database. Spots arriving via the wsprnet.org API
go to table spots. Users connect to this database
to query data. At current loads the server is well
able to handle data insertion and user queries.

4. Data is also obtained from third parties via a
scraper or an API. Currently we obtain the
three-hourly geomagnetic disturbance index Kp
from the US Space Weather Prediction Center.

5. As this data arrives at the server it is cached
before being mirrored to a backup server
logs1.wsprdaemon.org and inserted into a
replica TimebaseDB database.

3.2 Hardware outline
High availability, sufficient memory to hold at least one

Figure 2. Diagram showing the data architecture of WsprDaemon, its data input pathways, its resilient design in having a server
with a TimesacleDB database mirror data to a separate backup.

180

month of data in memory, appropriate processing power
and good Internet connection are key requirements for
the server logs.wsprdaemon.org. Currently these
requirements are met with an owned Dell 8-core 192GB
memory, 550GB SSD and 5TB disk machine. To ensure
resilience against power outages and to provide a Gb
Internet connection the server is collocated at a
Hurricane Electric data center. A backup machine
provides a hot-standby facility.

3.3 TimescaledDB installation and database set-up
Open Source, Community and paid-for Enterprise
versions of TimebaseDB are available for a range of
operating systems, including Windows, MacOS and
several Linux distributions [14]. Installation was
straightforward, edits to the configuration file were
necessary to allow, among others, remote connections,
access by password, and to set time zone to UTC. Port
5432 needs to be open on the router/firewall(s).

Initial set-up of a database is well described in the
TimescaleDB documentation, although new SQL users
will find the tutorial and examples pages at
www.postgresqltutorial.com very helpful. The
TimescaleDB extension need only be loaded once. An
interactive program, psql, enables effective
communication with the database for administrative
tasks and to download the results of queries as csv files.

For our initial database we migrated WSPR data from
Influx using a purpose-coded tool, Outflux [15]. If one is
migrating to TimescaleDB from another postgreSQL
database use the psql command pg_dump.

On creation, database tables will simply be

postgreSQL tables. The create_hypertable TimescaleDB
extension converts a postgreSQL table to a hypertable -
these are interlinked 'chunk' tables, where a chunk covers
a user-set time period. The choice of duration for a
chunk needs to consider the incoming average data rate
(say in MB/day), the size of the associated index, and the
free memory available across all of the active hypertables
and databases on the machine. It is advisable that all
active chunks fit into 25% of memory.

Early experience showed the spots table from
wsprnet.org, with derived variables, grew between 370
and 460MB/day from data, and 58 to 72MB/day from
the index. For logs.wsprdaemon.org with 192GB
memory we have set a conservative chunk size of 30 days
rather than the 83 days implied by the 25% guide. This
is to allow us to ensure that there is adequate CPU
performance for queries spanning 30 days as our user
base grows.

3.4 Query response times
There may be little value in providing examples of query
response times without a full, detailed analysis of the load
on the server. Nevertheless, given the minimal
information in Figure 3, queries via third party app
wsprd.vk7jj.com on all bands from OE9GHV for up
to 50,000 spots over 24 hours returned 33,908 spot lines
in 2.3 seconds, and for up to 500,000 spots over 7 days
returned 275,784 spot lines in 13.6 seconds. The average
time for 33 queries for all spots over the last hour for a
variety of stations was 1.4 seconds. [Note: when preparing
this figure logs.wsprdaemon.org was labeled WD1].

Figure 3. Screen shot of a pg_admin window showing statistics for the logs.wsprdaemon.org server. There are 1 to 8 active sessions; the
Tuples in graph shows the Inserts from wsprnet.org; the Tuples out graph shows traffic from user queries. The two peaks at left were for
queries via third party app wsprd.vk7jj.com for up to 50,000 spots over 24 hours received by OE9GHV on all bands, the queries returned
33,908 spot lines in 2.3 seconds, the right hand peak, with over 15 million Tuples out was for a query for all spots (275,784) from
OE9GHV for 7 days.

181

4. GRAFANA VISUALISATION WITH TIMESCALEDB
Grafana (grafana.com) is a multi-platform open source
data visualization package with extensive support for
connections to numerous databases including
postgreSQL and TimescaleDB. In its terminology the
user creates a 'Dashboard' comprising one or more
'panels', a panel may be a time series graph, a simple
gauge, a digital readout, a map, or a host of other data
representations. In this paper we focus on using Grafana
time series graphs with WSPR data from our
TimescaleDB database.

We have set up a few read-only example Dashboards
at logs.wsprdaemon.org:3000 with access inform-
ation available at wsprdaemon.org/grafana.html.
However, users may want to install Grafana on their
own machine to create custom Dashboards. Using Share
–> Export options the json code for our Dashboards can
be saved and imported into a user's local Grafana
instance as starting templates for their own versions.

4.1 Setting up Dashboards and panels
In summary, the steps to creating a data visualization

site after installing Grafana are:
• Add a data source: there are currently pull-down

options for over 20 sources, including database
types, cloud repositories, and enterprise plug-ins. A
single Dashboard may draw on data from one or
more of these sources. Adding a data source

requires connection details: host IP address, userid,
password, SSL mode, any connection time limits
etc.

• Build a Dashboard: Starting with a new blank panel
we add one or more queries if, as with
TimescaleDB, the source is a database. After
selecting the data source from its known list
Grafana provides a comprehensive skeleton SQL
Query Builder that the user modifies by deleting
unwanted parts, using pull-down options to add
specifics, e.g. to select SNR or distance as variables
to plot, whether to use aggregate functions, e.g. to
count the number of spots received in a time
interval, or to form an average. For simple queries
the Query Builder is sufficient; more complex
queries can be written directly in SQL.

• Choose and customize visualization: Simple graphs
of time series are excellent for many variables, but
other Grafana options are very useful. Heat maps
show the value of a derived quantity, e.g. a count of
instances, as a color (effectively a z-axis) within a
time period (a time bucket) and over a range of the
y-axis variable (bins). Examples of heat maps
include the number of spots in 20-minute time
buckets and 1000km range bins, or in 15 bins of
azimuth at the receiver.

5. INSIGHTS INTO PROPAGATION AND STATION

Figure 4. Grafana Dashboard that enables a user to compare distance statistics in 10 minute intervals (lower quartile, median, upper
quartile) for two receivers and two bands. As in this example, a comparison may be between two different receivers on the same band,
but can also be used for the same receiver on two different bands. Pull down options at top right set the time span and the user can save
or export the plot, or save the data in csv or json formats.

182

PERFORMANCE
In this section we show three graphical examples to
illustrate the value of bringing together a time series
database and Grafana visualization. A common feature
of most of these Grafana Dashboards is that by using
template variables the user can easily select, using pull-
down options, the stations, bands etc. to plot.

5.1 Insights into propagation - simple time series plots
Figure 4 shows a Dashboard that enables us to look at
simple statistics with time of the distances between
receiver and transmitters for two receivers and for two
bands. The statistics here are the lower and upper
quartiles and the median. The two receivers may be the
same, but the bands may differ, or, as in this example,
we can compare two different receiver stations on the
same band.

In this example on 40m, AI6VN/KH6 is on Maui,

Hawaii, while KK6PR is in central Oregon. For
AI6VN/KH6 the lower quartile represents the distance
to the west coast of N. America. Propagation over that
path is almost continuous, except for gaps between 2000
and 0000UTC. About 0200UTC the band opens to the
US South- then Mid-West (upper quartile and mean
very close), followed very soon by a step in the upper
quartile from propagation extending to the Eastern
Seaboard. About 1300UTC the path to the Eastern
Seaboard closes. The hours until about 1800UTC
(spanning sunrise) show more day-to-day variability: on
29 July propagation was open to Australia (11,000km),
but not on 30 or 31 July, the path to South Africa
(19,000km) opened each day, albeit very briefly on the
31st.

For KK6PR the overall pattern is similar, but the
band starts to open to the Eastern Seaboard 2-3 hours

Figure 5. An example Grafana Dashboard that combines simple time series graphics from three sources with heatmap representation
of data. The data spans four days for 40m from KA7OEI-1, a KiwiSDR at the Northern Utah SDR site. The top panel shows the
number of spots received in 20-minute intervals in green, with three-hourly estimates of the planetary geomagnetic disturbance index
Kp in yellow. The second panel is a heatmap of the number of spots in 20-minute intervals within 1000km distance bins out to
20,000km. The third panel shows azimuth at the receiver in 15 and 20 minute bins. The bottom panel shows the c2_FFT and
RMS noise estimates with a distinct diurnal pattern.

183

Aids to the Presentation and Analysis of WSPR Spots 7

earlier, at just before 0000UTC, and it is open for
longer. The increased upper quartile distances spanning
sunrise were from path openings to Japan, New Zealand
and Australia.

While undoubtedly useful, these simple graphs require
the user to consult listings of spots received to fully
interpret the paths involved. Presenting the data as heat
maps of distance and azimuth at the receiver helps
(admittedly with ambiguity over short and long path).

5.2 Displaying other data and heat maps alongside WSPR spots
Figure 5 is an example Grafana Dashboard combining

simple time series graphics from three sources with heat
maps. The data spans four days for 40m from KA7OEI-
1, a KiwiSDR at the Northern Utah SDR site [16]. The
top panel shows the number of spots received in 20-
minute intervals in green, with three-hourly estimates of
the planetary geomagnetic disturbance index Kp in

yellow. While there is day-to-day variation, there is a
daily broad minimum spanning local noon. The heat
map in the second panel shows a distinct daily
periodicity in the number of statins received at a distance
of 2500-4000km – from the Eastern Seaboard – an
interpretation helped by the azimuth heat map in the
third panel. However, reference to a list of received spots
is still needed to check that the first evening DX is from
South Africa, then New Zealand, followed by Australia
and Europe. But on some days, southern European and
North African stations appear during early evening. The
bottom panel shows the c2_FFT and RMS noise
estimates with a distinct diurnal pattern suggesting that,
above the troughs, the noise was being propagated in
rather than from a local source.

5.3 Visualizing derived data - SNR difference
As postgreSQL, the foundation of TimescaleDB, is a

Figure 6. As postgreSQL is a relational database that allows self-joins a query in Grafana can return data derived from one or more
receivers. This Dashboard shows the SNR difference between G3ZIL and G4HZX on 40m, for spots from the same sender at the
same time, as a time series scatter plot in the top panel, as median and lower and upper quartiles in the second panel and as a heatmap
in the third. Heat maps of spot distance and azimuth at G3ZIL help interpret the SNR difference.

184

relational database it is easy to use join queries, across
different tables and databases but also within a table (a
self-join). Grafana's query builder does not have
sufficient options to construct a self-join but it is
straightforward to write the necessary postgreSQL
queries. Figure 6 shows a Dashboard designed to derive
and plot the SNR difference between any two selected
receivers where they spotted the same sender at the same
time on the same band. The SNR difference is shown as
a scatterplot, as median, lower and upper quartile in 20-
minute intervals and as a heat map. Heat maps of the
spot distance and azimuth at the first receiver are added
to help interpretation.

In this example G3ZIL and G4HZX are 110km apart,
G3ZIL generally has higher local noise than G4HZX,
and the antenna is a vertical at G4HZX and a pair of
low inverted V dipoles at G3ZIL. The statistics and heat
map panels are the most useful for seeing the SNR
differences. Clearly, a snapshot over a few minutes or
even a few hours would not convey the complexity of the
changes in SNR with time.

While there are undoubtedly short term variations
there are clear diurnal (daily) variations as well as longer-
term changes. Comparing the SNR difference and
distance heat maps show higher SNR at G4HZX during
hours of darkness with 40m open to the west, to North
America, as seen in the azimuth heat map. The vertical
out-performs the low dipoles for signals with low arrival
angles. Conversely, spanning local noon, the low dipoles
give a higher SNR than the vertical for signals from 0–
1000km arriving at higher angles.

6. CONCLUSION
Implementing a database of our own has reinforced our
opinion that wsprnet.org does a very good job at data
collection and fulfilling simple web-based queries. With
wsprnet.org as the primary data collector we have shown
how a time series database and a visualization package
can provide a richer set of data queries and graphical
output.

Along the way we learnt about the strengths and
weaknesses of time series databases. While Influx's
documentation was excellent and a working system was
easy to implement it took some time for its drawbacks in
dealing with the very high cardinality of WSPR data to
become obvious.

TimescaleDB's design better suits WSPR data,
although on a machine with limited memory query
response times into 10s of seconds occur for data not in
the current time chunk. Our affordable solution has been
to move to a server with 192GB of memory, sufficient to
hold 30 days of WSPR data in memory, and with
sufficient SSD and disk storage to provide (albeit slower,

but still online) access to older data when required.
Grafana comes with built-in connection paths to

TimescaleDB and other data sources. Its own
visualization options for time series graphs and heat
maps are an excellent starting point for examining
WSPR spot data, as illustrated in this paper. Plug-ins
from a growing community of third-party sources
provide an even wider range of options such as forms of
Hovmöller diagrams where the y-axis is hour of the day
and the x axis time, and a range of maps.

Finally, there is clear potential from adding non-
WSPR data. We have only scratched the surface in this
regard, sourcing geomagnetic disturbance measurements
from the US Space Weather Prediction Center.
Through the means outlined in this paper we look
forward to users making far more of the terrific resource
that is the global WSPR community and its data.

Acknowledgment
We are grateful to Rick Whal (KK6PR), Clint Turner
(KA7OEI) and Nigel Squibb (G4HZX) for permission to
refer to their data, to constructive discussion and
comment from WsprDaemon users at their weekly
teleconference and to Glenn Elmore for his support,
advice and indefatigable testing.

REFERENCES
[1] github.com/garymcm/wsprnet_api and derivatives

such as github.com/dl2sba/WsprNet
[2] Taylor, J. and Walker, B., 2010. WSPRing around the

world. QST, 94(11), 30-32.
[3] www.jimlill.com:8088/today_int.html
[4] wspr.pe1itr.com/
[5] mardie4.100webspace.net/wspr/
[6] wspr.aprsinfo.com/
[7] wspr.vk7jj.com/
[8] apps.apple.com/us/app/wspr-watch/id532487317
[9] wspr.fggs.de
[10] Robinett, R., 2019. WsprDaemon: A low cost, high

performance, all band WSPR decoding system. ARRL /
TAPR Digital Communications Conference, Detroit, 2019.
www.youtube.com/watch?v=nHVN8oUUtlE

[11] Struckov, A., Yufa, S., Visheratin, A.A. and Nasonov,
D., 2019. Evaluation of modern tools and techniques
for storing time-series data. Procedia Computer Science,
156, pp.19-28.

[12] docs.influxdata.com/influxdb/v1.8/introduction/get-
started/

[13] blog.timescale.com/blog/what-is-high-cardinality-how-
do-time-series-databases-influxdb-timescaledb-compare

[14] docs.timescale.com/latest/getting-started/installation
[15] github.com/timescale/outflux
[16] www.sdrutah.org/

