
ARRL andTAPR
DIGITAL
COMMUNICATIONS
CONFERENCE

34th

October 9-11, 2015
Chicago, Illinois

ISBN: 978-1-62595-040-6

1

 ARRL
 225 Main Street
 Newington, CT 06111-1494 USA
tel: 860-594-0200 www.arrl.org

 Tucson Amateur Packet Radio
 PO Box 852754
 Richardson, TX 75085-2754 USA
tel: 972-671-8277 www.tapr.org

 34th ARRLandTAPR
DIGITAL COMMUNICATIONS
CONFERENCE

2

Copyright 2015

The American Radio Relay League, Inc.

Copyright secured under the Pan-American Convention

International Copyright secured

All rights reserved.

No part of this work may be reproduced in any form except by written permission
of the publisher. All rights of translation reserved.

Printed in USA.

Quedan reservados todos los derechos.

ISBN: 978-1-62595-040-6

First Edition

Copies of this book can be ordered from www.lulu.com.

3

Welcome!

The ARRL/TAPR Digital Communications Conference is the premier gathering of
Amateur Radio digital enthusiasts in the country, if not the world. This year we
welcome everyone to Chicago for the 34th meeting since these annual conferences
began.

As anyone who has ever attended a Digital Communications Conference will tell you,
these gatherings are excellent venues for innovative ideas and discussions. Within these
proceedings, for example, you’ll find papers on topics ranging from HF receiver testing
to ARDOP, the Amateur Radio Digital Open Protocol. Most of these papers are
appearing in public for the very first time.

The ARRL thanks Tucson Amateur Packet Radio (TAPR) for all the hard work they do
to make these conferences successful. Were it not for TAPR, it is possible that the
conferences would not occur at all.

Dave Sumner, K1ZZ

ARRL Chief Executive Officer

September 2015

4

Table of Contents

QRPi – A Raspberry Pi QRP TX Shield Design; Zoltán Dóczi, HA7DCD 1

VOA Radiogram: Text and Images via Shortwave Broadcasting;
 Kim Andrew Elliott, KD9XB ...10

HF Receiver Testing: Issues & Advances; Adam Farson, VA7OJ/AB4OJ 20

The AREDN Project (AREDN.org); Andre Hansen, K6AH ..35

Feher Modulation 16 QAM; Patrick Jungwirth, PhD ...49

Update on DATV-Express Exciter for Digital-ATV; Ken Konechy, W6HHC 59

Measuring the Ionosphere at Vertical Incidence using Hermes, Alex, and
 Munin Open HPSDR and Gnuradio; Tom McDermott, N5EG ..74

Arduino CAT Controller for HPSDR; John Melton, GØORX/N6LYT 87

ARDOP (Amateur Radio Digital Open Protocol): A next generation digital Protocol
 for HF and VHF/UHF; Rick Muething, KN6KB, Matthew Pitts, N8OHU,
 and John Wiseman, GM8BPQ ..98

An OS Independent and Device-Independent Mobile Web Front Panel for
 Radio Transceivers; Bruce Perens, K6BP ..105

Broadband-Hamnet™; Patrick Prescott, KC1AJT ...114

OpenWebRX: SDR Web Application for the Masses; Andras Retzler, HA7ILM 122

Modulation – Demodulation Software Radio; Alex Schwarz, VE7DXW, and
 Guy Roels, ON6MU ...130

Design of a Practical Handheld Software Radio: Part II; Chris Testa, KD2BMH 144

A Radio Server for VHF+ Contesting and Weak Signal Work; Phil Theis, K3TUF 155

SatNOGS: Satellite Networked Open Ground Station; Daniel J. White, PhD, ADØCQ 172

1

QRPi – A Raspberry Pi QRP TX Shield Design

Zoltán Dóczi, HA7DCD
Budapest, Hungary
+36 70 316 81 56
zoltan@rfsparkling.com

Abstract
"Be Smart, Not Strong" this should be the self explaining phrase of the QRP term in amateur radio.
Low power operation is always more difficult than using hundreds or thousands of watts RF power.
But the smile on your face after the first thousands miles long QSO, using portions of one watt is
worth the challenge! QRP enthusiasts instead of spending time and money on increasing power
capabilities of its station prefer a smarter way: to learn about new modulations and coding techniques
and applying them in everyday HAM operation practice.

Nowadays one of the most impressive QRP mode is Joe Taylor, K1JT's [8] WSPR [9] (pronounced
"whisper"). WSPR stands for "Weak Signal Propagation Reporter". Programs written for WSPR mode
designed for sending and receiving low-power transmissions to test propagation paths on the MF and
HF and recently UHF bands. Users with internet access can watch results in real time at wsprnet.org

The QRPi board (or shield as referred by the community today) is an inexpensive way turning a
Raspberry Pi single-board computer into a QRP transmitter.

Keywords: QRP, RPi, SDR, WSPR, open-source

Introduction
My QRPi shield is inspired by the WsprryPi [10] open source program, I've started to play with it as
any other HAM operator, experimenting with the WSPR mode. At the beginning I followed the
available articles [2] and DIY [10] guides about connecting a Low Pass Filter (LPF) to the RF output
pin (GPIO 4) of the RPi computer. As an enthusiastic RF engineer and HAM operator I was instantly
measuring the output signal with a signal analyzer and found a broadband noise from 0 Hz up to
several harmonics [Fig 1] That was obvious that a LPF solves only the harmonic content attenuation
and doesn't help against the broadband noise of the RF signal synthesized with the BCM2835’s
"General Purpose GPIO Clocks".

2

Figure 1. - RF Output spectrum of RPi's GPIO4 pin without filtering

At that point I made a research to find the possible inexpensive but efficient way to filter out the noise
around the carrier. Lew Gordon's excellent article [3] led me to start my circuit simulations and to build
my early prototypes based on his Band Pass Filter (BPF) advice. After successfully optimizing the
BPF [Fig 3] values considering the parasitic parameters of the applied SMD inductors I saw a great
improvement at the output spectrum [Fig 2].

Figure 2. - RF Output spectrum of RPi's GPIO4 pin after BPF

3

Figure 3. - Frequency response of the 10m, 3 element BPF on a VNA

At that stage of the design the harmonics filtered by the LPF, and the broadband noise filtered by the
BPF were both acceptable. However there were still one thing missing: no buffer stage to protect the
BCM2835 SoC's clock generator output stage. Hardware failure due to the unbuffered operation of the
WsprryPi program was reported by a few HAM operators, possibly due to overload from nearly
broadcast transmitter stations. If buffer amplifier was already needed it was a good idea to add some
gain to the system. Eventually using a single FET amplifier stage [fig 7] 10 dB gain achieved,
delivering +20 dBm output power at the end of the LPF [fig 4].

Figure 4. - RF output spectrum of RPi's GPIO4 pin after BPF + PA + LPF

4

For ESD and static discharge protection an ESD suppressor diode was added to the antenna terminal
of the circuit.

I've targeted the absolutely smallest and most compact form factor. I've seen several RPi HAM
accessories which were too "bulky" in my point of view. Using large external PCBs with long cables
attached to the RPi it's destroy the true value of the card sized computer: small, mobile and flexible.

As I wanted to give an inexpensive QRP shield for the HAM and RPi community, mass production
capability (SMD parts) and cheap component selection (eg. no SMA connector) was mandatory from
the initial planning phase.

Regarding compactness I've exploited the advantages of inside PCB milling, leaving a gap for the
RPi's LCD ribbon cable connector. This way the QRPi shield has low profile while sitting on the RPi,
not even the highest point of the card-sized computer. This hopefully enables the use of popular stock
RPi plastic enclosures with the QRPi.

Figure 5. - CAD Layout screenshot of the QRPi shield

Figure 6. - Close up of a QRPi prototype PCB

5

Figure 7. - Schematic of the QRPi shield

Figure 8. - Device Under Test on the spectrum analyzer

6

Figure 9. - QRPi on a Raspberry Pi computer

QRPi WSPR field tests

Laboratory measurements and fine tuning is one thing, another important factor is the real life
operation and feedbacks from beta testers. Measurement and reports accumulated using WsprryPi
and the QRPi shield since December 2014 till nowadays on daily basis using the latest prototype [fig
9]. Without any sophisticated antenna, using only a simple outdoor random wire at 2m height
1000...2000 km QSOs are typical on the 10 and 20m band with the +20dBm output power [fig 10-11].

Until the release of this paper the following digital modes and tools were tried and measured using
QRPi:

 WSPR TX [10] - laboratory and field tests
 WSJT [11] - due to lack of resources not tested yet by the author of this paper, but seen

feedbacks from HAM operators who use this with RPi
 CW TX [12] - laboratory tests
 SSTV TX [13] - laboratory tests
 Signal Generator tool [14] - laboratory tests

7

Figure 10. - HA7DCD - LA9JO, 2400km 14.097185 MHz, WSPR

Figure 11. - Several European stations copying QRPi WSPR beacon, WSPR

8

Possible further developments
However the BPF filter does the job when filtering broadband noise coming from the BCM2835 SoC,
there are still issues when amplifying the relatively wide band RF signal. From my measurements and
investigations I realized that the FET amplifier starts to work as a mixer when the CW signal and the
broadband noise filtered portion driven to its gate. The mixing product can observed at the spectrum
analyzer screenshot [fig 12], ranging from 0 Hz to 10 MHz on the left side. I've successfully simulated
the QRPi mixing product behavior using noise signal from a signal generator, or driving two sinus
signal on the gate of the FET.

Investigation with FET biasing trials doesn't showed solution for this. The spurious content is still at
acceptable level [fig 4] however for upcoming revisions considering another PA structure with less
mixing behavior might be a good idea.

From software side a possible workaround should be to understand BCM2835's clock generators
usage deeply. Fine tune it and decrease noise.

Figure 12. - FET amplifier acting as a mixer because of wide band noise

I would like to say thanks for the kind help of:

Steven Bible - N7HPR
Andris Retzler - HA7ILM
Hackerspace Budapest and András Veres-Szentkirályi "dnet" - HA5KBP
Tucson Amateur Packet Radio Corp
HA5KFU Schönherz Amateur Radio Club

9

Reference List
1. QRP definition - https://en.wikipedia.org/wiki/QRP_operation
2. TUTORIAL: TRANSMITTER (PA) OUTPUT FILTERS by Paul Harden, NA5N

http://www.aoc.nrao.edu/~pharden/hobby/_lpf_pa.pdf
3. Band Pass Filters for HF Transceivers by Lew Gordon, K4VX

http://www.arrl.org/files/file/Technology/tis/info/pdf/8809017.pdf
4. Raspberry Pi website - https://www.raspberrypi.org
5. Raspberry Pi Low Level Peripherals - http://elinux.org/RPi_Low-level_peripherals
6. Raspberry Pi SoC, Broadcom BCM2835 - http://www.raspberry-projects.com/pi/pi-

hardware/bcm2835
7. BCM2835 datasheet - http://www.farnell.com/datasheets/1521578.pdf
8. K1JT website - http://physics.princeton.edu/pulsar/K1JT/
9. Weak Signal Propagation Reporter Network - http://wsprnet.org

Raspberry Pi transmitter programs working with QRPI TX shield:

10. WSPR - https://github.com/JamesP6000/WsprryPi
11. WSJT - http://hajos-kontrapunkte.blogspot.hu/2014/04/silent-whisper-jt9-on-cubie-truck.html
12. CW - https://github.com/JamesP6000/PiCW
13. SSTV - https://github.com/JennyList/LanguageSpy/tree/master/RaspberryPi/rf/sstv
14. Signal Generator -

https://github.com/JennyList/LanguageSpy/tree/master/RaspberryPi/rf/freq_pi
15. HA5KFU Radio Club - http://ha5kfu.sch.bme.hu
16. Hackerspace Budapest - http://hsbp.org/

10

VOA Radiogram: Text and Images via Shortwave Broadcasting
Kim Andrew Elliott, KD9XB
Voice of America
330 Independence Avenue SW
Washington, DC 20237
ke@bbg.gov

Abstract: The Internet has largely replaced shortwave radio for the broadcast of news and
information across international boundaries. A growing number of countries, however, are
blocking Internet content from abroad. As a possible workaround, digital text modes familiar to
the amateur radio community can be used to broadcast news via existing shortwave transmitters
and can be received on any shortwave radio, but software is required to decode the text. VOA
Radiogram is a weekly Voice of America program experimenting with text and images through
a shortwave broadcast transmitter

Keywords: broadcasting, HF, shortwave, MFSK

Introduction

International broadcasting services such as the Voice of America and BBC World Service traditionally
employed shortwave radio to transmit news and information across national boundaries. In recent
years, international broadcast content has shifted to the Internet as more audiences have access to this
new medium. The Internet enables not only audio, but also text, images, and video to be conveyed over
long distances, and it provides the audience with more control over the choice of content, as well as an
immediate means of feedback.

Unlike shortwave radio, Internet content is usually brought into a country via landlines, and is routed
through Internet providers in the “target” country. These factors provide a national government the
opportunity to block Internet content it deems undesirable. Circumvention technologies, e.g. Psiphon
and Tor, afford audiences in the target country some opportunity to overcome this interdiction, but an
even larger industry (much of it based in the United States) help governments step up their counter-
circumvention efforts.

Internet content can be disrupted not only by dictators, but also by disasters, both natural and caused
by humans.

Digital modes via analog broadcast

In the past decades, while pondering solutions to Internet interdiction, I also became active in the
amateur radio digital modes. I was most impressed by the ability of the digital modes to transmit text
successfully even in the worst reception conditions. This led me to wonder if the digital text modes
from amateur radio could be used on a shortwave broadcast transmitter.

Educated by my engineering colleagues at the International Broadcasting Bureau (parent agency of the
Voice of America), I learned that this could be done, at least in theory. In fact, the modes could even

11

be transmitted in the AM mode of the IBB’s shortwave broadcast transmitters, and received on typical
low-cost shortwave radios lacking single sideband capability. Early tests used amateur radio
transceivers with a dummy load “antenna” to nearby shortwave radios. By the spring of 2012, brief
transmissions via private shortwave broadcast stations in the United States resulted in successful
decodes hundreds of kilometers from the transmitter.

In March 2013, VOA Radiogram went on the air. This half-hour program is transmitted four times per
weekend through a 50-year-old GE transmitter, operating at 80 kilowatts, at the Edward R. Murrow
transmitting station near Greenville, North Carolina. Two of the transmissions are via a curtain antenna
directed to Europe, and two are via a dipole to the Caribbean. The broadcasts are typically heard both
in and outside their nominal target areas.

Most of the content on VOA radiogram consists of science news from the Voice of America website,
voanews.com. Text from the website is pasted to the transmit pane of Fldigi, the well-known digital
encoding/decoding software from authored by David Freese, W1HKJ. Fldigi transforms the text to the
tones which are inserted into a digital audio file for broadcast. Most listeners use Fldigi to decode, but
some decode with other software, such as MultiPSK and DM780.

Thousands of reports have been received from shortwave listeners and radio amateurs throughout
Europe and North America, as well as some in Latin America, and, beyond the nominal coverage area
of the North Carolina transmitter, in Asia and the Pacific. Listeners use a variety of equipment to

Figure1:MFSK32 data, about 500 Hz wide, 1500 Hz above and below the
5745 kHz carrier, as received by VOA Radiogram listener Roger in Germany.
An interfering signal is in the upper sideband.1

12

receive VOA Radiogram, including amateur transceivers, shortwave portables, antique radios with
shortwave bands, and SDR black boxes and dongles. Reception on inexpensive radios is

Figure 2: Typical equipment needed to receive and decode VOA
adiogram broadcasts is a portable shortwave radio and a
notebook PC, with a patch cord feeding audio from the former to
the latter. Appropriate software is also necessary.

Figure 3:MFSK32 centered on 1500 Hz decoded in Germany, March 1,
2015, 0230 0300 UTC on 5745 kHz.

13

especially encouraged. Audio is typically fed to a computer using a patch cord, or through an interface
such as SignaLink. “Acoustic coupling,” in which the built-in microphone of a laptop computer is
placed near the radio’s speaker, is not uncommon.

MFSK and challengers

During the early weeks of VOA Radiogram, modes of similar speeds were transmitted to compare the
number of errors. The MFSK modes performed well early on, so, in the manner of boxing, “champion”
MFSK took on challengers one at a time. One week the 110 word per minute PSKR125 would be
followed by the 120-wpm MFSK32, and the 220-wpm PSKR250 would be followed by the 240-word
MFSK64. In the subsequent weeks, MFSK modes would be compared to similar mode speeds of MT-
63, DominoEX, and THOR. Throughout this process, the MFSK exhibited fewer, and at least no more,
errors than the competing mode.

With MFSK established as the most promising mode, VOA News content was transmitted in different
speeds of MFSK to determine which provide ideal performance in shortwave broadcast conditions.
Based on hundreds of reports, it was determined that MFSK32, at 120 wpm, provides the best
combination of performance and speed in the conditions experienced by most VOA Radiogram
listeners.

The MFSK16 mode is slower but can be useful in difficult reception conditions. For reliable
transmissions paths, such as the typical distance between an IBB shortwave relay site and most VOA
target countries, MFSK64 will usually succeed and allows twice the content during the time period
than does MFSK32. General guidelines for the use of MFSK modes under different conditions are
summarized in Table 1.

Table 1: Guidelines for the use of MFSK modes in different shortwave reception conditions
Mode Speed (WPM) Expected Conditions
MFSK16 60 Poor
MFSK32 120 Fair
MFSK64 240 Good
MFSK128 480 Excellent

During the first year of VOA Radiogram, it was also discovered that text via analog transmitter
provided more reliable reception than voice via analog transmitter, i.e. the original purpose of these
transmitters. In reception conditions where voice content may be difficult to comprehend, text often
provides a 100% decode. Text via shortwave extends the useful range of a shortwave broadcast
transmitter.

Another advantage of text via analog radio is the opportunity for “unattended reception.” Text content
can be received during the overnight hours and read after waking in the morning. Or the text can be
receiving during the day, to be read when returning home from work.

If the Fldigi software is configured for the UTF-8 character set, and the user’s operating supports the
language, alphabets with diacritics and even non-Latin characters can be accommodated. VOA
Radiogram has successful transmitted content in Russian, Chinese, Tibetan, and even the right-to-left
Persian language. This is obviously a vital feature in international broadcasting.

14

Images via shortwave broadcast

A bonus of the MFSK mode is its ability to transmit images. Images can add to the meaning of a VOA
News story, or enhance its credibility.

SSTV modes have been tested on VOA Radiogram. MFSK has proven more satisfactory in part
because, unlike with SSTV, the size and shape of the image can be adjusted. In general, images are
limited to 200x300 or 300x200 pixels so that their transmission does no occupy too much time. Images
of the same size in MFSK16, 32, 64, and 128 require the same amount of time to transmit, but
resolution sharpens as the baud rate increases. The higher baud rates, however, also increase the
chances for interference, usually exhibited as lines in the decoded image. As with text, MFSK32 has
shown itself to be the best compromise, in this case between resolution and resistance from
interference.

Images are often fuzzy or noisy, the more important text content is usually received 100% thanks to the
error correction built in to the MFSK modes.

Figure 5: Four modes of images as received by Frank in the Netherlands,
August 2, 2015, 1930 2000 UTC, on 15670 kHz.

Figure 4: Tibetan text decided by Merkouris in Greece, August 31, 2015, 1930 2000 UTC on
15670 kHz, using Fldigi.

15

Images in EasyPal, which uses DRM (Digital Radio Mondiale) encoding, have also been tested on
VOA Radiogram. This is the all-radio version of EasyPal, not the hybrid version that refers the user to
a server for download. As is typical of digital communication, the results were either perfect (and
dazzling) or completely absent. As impressive as the successes were, the failures were too frequent to
encourage continuation of the Easypal experiments. The seven-minute transmission time for the most
robust version of EasyPal images was another impediment.

Jamming

If a regime blocks Internet content from other countries, there is a good chance it will also jam
shortwave broadcasts from abroad. China vigorously jams shortwave broadcasts from the United
States and other Western countries. Usually this is done by placing Chinese domestic radio
programming, usually from more than one transmitting site, on the same frequency as a VOA or Radio
Free Asia broadcast in Mandarin, Cantonese, Tibetan, or Uighur. Chinese operatic music or just noise
is also used.

To determine if the text modes via analog shortwave broadcast can penetrate jamming, brief text
transmissions were inserted in the shortwave broadcasts of the VOA Mandarin and RFA Cantonese
services. The transmitters were the usual IBB relay facilities in Asia. MFSK16 and Olivia modes were
used during these tests. Monitoring on receivers in Hong Kong and Japan demonstrated that these
modes often, but not always, resulted in successful decodes of the Chinese text, despite conditions that
prevented the comprehension of the accompanying VOA and RFA voice content.

Figure 6: This EasyPal (DRM) image was decoded by Lorenzo
in Italy, June 22, 2015, during the 1600 1630 UTC broadcast
on 17860 kHz.

16

Similar successful tests were conducted with Radio Martí shortwave broadcasts, which are heavily
jammed by Cuba.

A future for text via shortwave broadcast?

The Fldigi software has remarkable capabilities, but it may be intimidating to non-technical users.
Furthermore, audiences for international broadcasting do not need the encoding capabilities of this
software. Wider accessibility to text and images via analog shortwave broadcast will require the
development of software applications to simplify the decoding process and to enable decoding to be
possible on mobile devices. (An Android version of Fldigi, AndFlmsg, is already available in beta
version.)

It would also be very helpful for some shortwave receivers to include the ability to decode text modes.
Such a development would be assisted by the adoption of one or a small number of modes to be used
in shortwave broadcasting, and encouraged by the transmission of text by more shortwave
broadcasters. (Text and images via analog radio can also be employed on the AM [medium wave] and
FM radio bands.)

The development of easier-to-use software and hardware will probably not transform text via
shortwave into a popular mass medium. If this technology can reach a few thousand users in a country

Figure 7: Chinese text in MFSK16, centered on 2000 Hz, penetrated
Chinese jamming, August 7, 2014, 2258 UTC on 9845 kHz, as received
and decoded by TW in Japan.

17

or area cut off from external Internet traffic, those users can then relay the information through what
would become the country’s intranet, or through non-electronic means in a disaster zone.

The future of shortwave broadcasting, voice or text, is certainly in question. As audiences have
migrated to television and the Internet, many major shortwave broadcast transmitting facilities have
been dismantled. Most developing countries have eliminated or largely curtailed their use of shortwave
for domestic broadcasting now that their territories are covered by networks of FM and television
transmitters. Fewer shortwave radios are available for sale; Sony, for example, is down to one model.

There is some interest in adopting DRM (Digital Radio Mondiale) to increase the fidelity of shortwave
broadcasts. DRM is, however, less forgiving than analogue shortwave, with the audio dropping out
completely in reception conditions, e.g. diminished signal strength and co-channel interference, that
are not unusual on the shortwave bands. In similar difficult conditions, text via shortwave is more
forgiving than analogue voice via shortwave. The availability of this technology to work around
Internet interdiction may not be available if analogue shortwave transmitters and receivers are no
longer available.

For more information about VOA Radiogram, including the transmission schedule, visit
voaradiogram.net.

The author acknowledges the assistance of Gerhard Straub, K6XH, Director, Broadcast
Technologies in the office of Technology, Services, and Innovation of the U.S. International
Broadcasting Bureau, and Daniel Maxwell, N5LAY, IBB TSI electronic engineer, in the
development of the VOA Radiogram project. And Macon Dail, WB4PMQ, as well as the staff at
the IBB's Edward R. Murrow shortwave transmitting station near Greenville, North Carolina.
Additional education and encouragement were provided by my amateur radio friends
Christopher Rumbaugh, K6FIB, and Benn Kobb, AK4AV.

Figure 8: This $25 radio in Germany provided audio for
a successful decode of VOA Radiogram text.

18

19

20

HF Receiver Testing:
Issues & Advances

(also presented at APDXC 2014, Osaka, Japan, November 2014)

Adam Farson VA7OJ/AB4OJ
Copyright © 2014 North Shore Amateur Radio Club

9 October 2015 1HF Receiver Testing

HF Receiver Performance Specs
what HF operators “shop” for

• Sensitivity
– Test signal level for a given signal/noise ratio in a given bandwidth
– Usually stated as Minimum Discernible Signal (MDS) or noise floor:

• Input in dBm at 500 Hz bandwidth to raise audio output level by 3 dB

• Selectivity & shape factor
– IF or detection bandwidth at 6 and 60 dB points on passband curve

• Reciprocal mixing dynamic range (RMDR)
– Test signal level at a given offset from RX freq. to raise audio output by 3 dB, minus MDS

• A function of local oscillator phase noise

• 2 signal, 3rd order IMD dynamic range (DR3)
– Input power of each of two equal test signals at a given spacing and 500 Hz bandwidth to raise

demodulated IMD product by 3 dB, minus MDS

• Blocking gain compression
– Level of strong signal at a given offset from weak signal to reduce level of demodulated weak signal

by 1 dB. RX tuned to weak signal; 500 Hz bandwidth.

9 October 2015 2HF Receiver Testing

21

More HF Receiver Specs
also important in choosing a rig

• 2 signal, 2nd order IMD dynamic range (DR2)
– Input power of each of two equal test signals falling outside band under test at 500 Hz

bandwidth to raise demodulated IMD product in band under test by 3 dB, minus MDS.
Receiver tuned to band under test (typically 14 MHz).
• Determines receiver’s susceptibility to QRM from HF broadcasters

• Frequency stability
– Drift measured in Hz or parts per million (ppm) over time, and over a temperature range if a

variable temperature test chamber is available
– Not usually an issue with modern synthesized radios

• Inband IMD
– Relative amplitude of either of two narrow spaced test signals (typically spaced 200 Hz) and

their associated IMD products, measured at audio output
• Severe inband IMD causes listener fatigue

• Image & IF Rejection
– An old problem returns in receivers with inband 1st IF

9 October 2015 3HF Receiver Testing

Main HF Receiver Impairments

• Intermodulation Distortion (IMD)
– Odd order IMD
– Even order IMD
– IMD from multiple carriers approaches noise

• Reciprocal Mixing Noise
– RF signal or noise mixes with LO phase noise

• Image Response, IF Leakage
– RF signal or noise response at image freq. & IF

• Sensitivity/MDS is not an issue in modern receivers.
– Below 21 MHz, the receiver noise floor is 10 dB below band noise.

9 October 2015 4HF Receiver Testing

22

IMD:
intermodulation distortion

• Odd order IMD
– IMD products usually in same band as received signals f1, f2
– 3rd order IMD products: 2f1 f2, 2 f2 f1

• Example: f1 = 7010 kHz, f2 = 7015 kHz. Products: 7005, 7020 kHz

• Even order IMD
– IMD products not in same band as f1, f2.
– 2nd order IMD product: f1 + f2

• Example: f1 = 8025 kHz, f2 = 6010 kHz. Product: 14035 kHz

• On a crowded band, multiple carriers generate a large number
of IMD products
– Limiting case is where spectrum of IMD products approaches Gaussian

noise

9 October 2015 5HF Receiver Testing

IMD Example

69 October 2015

IMD Example: f1 = 270 MHz, f2 = 275 MHz.
IMD products at 265 and 280 MHz.
280 MHz IMD product masks weak signal.

HF Receiver Testing

23

Reciprocal Mixing Noise

Strong interferer mixes with LO phase noise to “throw” noise into IF channel. If the interferer consists
of wideband noise, the IF channel will be filled up with noise.

9 October 2015 7

Weak Signal

HF Receiver Testing

Image Response, IF Leakage

• Image response:
– Acceptance of signals at f0 ± 2 * IF (f0 = signal freq.)

• Example: f0 = 10455 kHz, IF = 455 kHz. Image: 10000 or 10910 kHz.

– In modern receivers with high 1st IF, RF
preselector suppresses image response almost
completely.

• IF leakage:
– Acceptance of signals at or close to 1st IF.

• Example: 1st IF = 9 MHz. On 30m band, preselector may be sufficiently wide
to pass some energy at 9 MHz. This will enter the IF chain and interfere with
desired signals.

– This is not a problem in receivers whose 1st IF is above the highest
operating frequency.

9 October 2015 8HF Receiver Testing

24

Blocking and overload

• Blocking: degradation of receiver sensitivity in the presence of a
much stronger (blocking) signal.

• Blocking gain compression occurs when the interferer drives the first
active RF stage to its compression point, thus causing desensing.

• Blocking gain compression is the difference in dB between the level
of an incoming signal which will cause 1 dB of gain compression, and
the level of the noise floor.

• Note that in a direct sampling SDR receiver, no blocking occurs until
the ADC is driven into saturation (clipping).

9 October 2015 9HF Receiver Testing

Typical Superhet Receiver
showing impairment areas

Multiple signals or wideband noise applied to RF IN will provoke IMD products at IMD choke points,
and mix with LO phase noise to cause reciprocal mixing noise.

Steering diodes in RF/IF signal paths can also generate IMD.
Passive IMD can occur in RF BPF components and crystal or mechanical filters.
In addition to IMD and phase noise, image responses and IF leakage can arise if RF BPF is too wide to
attenuate undesired signals at image frequency and IF.
All these products will appear in IF/AF chain as added noise, spurs etc.

9 October 2015 10HF Receiver Testing

25

Issues in standard receiver test methods:
instrument limitations

• Synthesized RF signal generators used for MDS, reciprocal mixing, blocking
and IMD testing can have moderate to severe phase noise. This will degrade
measurement accuracy.

– A solution: ultra low noise crystal oscillators. These are costly and not frequency
agile. A vacuum tube LC type generator is also usable, but has poor frequency
stability/accuracy.

– Synthesized generators with excellent phase noise performance are available, but
are somewhat costly.

• Spectrum analyzers are frequently used for phase noise measurements.
– Many high end analyzer models support phase noise measurement software.
– The limitation here is that the lowest phase noise value the instrument can display

is that of its own internal phase noise.

9 October 2015 11HF Receiver Testing

Sig Gen Phase Noise Example
HP 8640B & Marconi 2018A

9 October 2015 12HF Receiver Testing

26

Ultra Low Noise Crystal Oscillator

9 October 2015 13

TYPICAL SPECS:

HF Receiver Testing

Typical 2 Tone IMD Test Setup:
also used for blocking tests (see p. 17)

9 October 2015 14

Test signal power is adjusted for 3 dB increase in level meter reading. DR3 = test
signal power – MDS.

Amplifiers A1, A2 buffer the signal generators G1 and G2 to block RF sneak paths
across the combiner. This prevents mixing in the generators’ output stages (a
cause of IMD).

HF Receiver Testing

27

Improved RMDR Test Method
using notch filter to improve accuracy

• Notch filter (notch at f0, depth > 80 dB) between sig. gen. and DUT.
• f0 = freq. of max. attenuation. f = offset.
• DUT tuned to f0. Sig. gen. tuned to f0 + f; input power to raise audio output

by 3 dB is noted.
• Notch filter suppresses sig. gen. phase noise at f0, thus improving

measurement accuracy.
• RMDR = input power – filter passband insertion loss – MDS.

9 October 2015 15HF Receiver Testing

Issues in 2 tone 3rd order IMD dynamic range (DR3) testing:
subtractive test method

• ARRL uses subtractive DR3 test method (ITU R SM.1837 Sec.2).
– IMD product amplitude is measured at audio output using signal analyzer with 1Hz or 3Hz

RBW, to subtract out the noise contribution.
– The DR3 value obtained via this method ismeaningless unless RMDR is measured and the

result presented alongside DR3.
– ARRL are now presenting RMDR alongside DR3 in their QST Product Reviews.

• A “100 dB” radio with 85 dB RMDR is not a 100 dB radio; it is an 85 dB radio!
To claim otherwise is deceptive advertising.

• If RMDR < DR3, reciprocal mixing noise will mask that “weak one” long before
IMD product does.

• In a practical on air operating environment, artifacts and splatter from distant
transmitters will mask weak signals much more often than will IMD in the
local receiver.

• This is more an operational and regulatory problem than a technical one.

9 October 2015 16HF Receiver Testing

28

Issues in 2 tone 3rd order IMD dynamic range (DR3) testing:
classical test method

• In the DR3 test method outlined on p. 14, the IMD + noise amplitude is
measured at the audio output using an RMS level meter such as the HP 3400
or 339A.

• The test engineermustmeasure RMDR and DR3. If RMDR > DR3, the test
result is DR3. If RMDR < DR3, we are reading RMDR.

• To check, turn off f1 and f2 in turn. If audio output drops by less than 3 dB
when either f1 or f2 is switched off, the test result is RMDR, not DR3.

• This is acceptable; the test will reveal whether IMD or reciprocal mixing is the
receiver’s dominant impairment.

• In on air operating, reciprocal mixing (RM) can arise more often than IMD, as
only one undesired signal will produce RM whereas two are required for IMD
to occur.

9 October 2015 17HF Receiver Testing

Masking of weak signal
when reciprocal mixing exceeds IMD

189 October 2015

IMD Example: f1 = 270 MHz, f2 = 275 MHz.
IMD products at 265 and 280 MHz.
Reciprocal mixing noise masks weak signal.

RM Noise

HF Receiver Testing

29

Issues in SDR testing:
direct sampling SDR characterization

• With the advent of fast, cost effective ADCs, the direct sampling SDR has
eclipsed its QSD (quadrature mixer) predecessors.

• This architecture poses new challenges to the test engineer:
• DR3 and RMDR have no relevance as performance metrics.

– DR3 increases with increasing test signal power, reaches a peak at ~ 10 dBFS (10 dB below
ADC clipping) and then drops rapidly.

• IP3 (3rd order intercept) is meaningless here, as IMD in an ADC follows a
quasi 1st order rather than a 3rd order law.

– The transfer and IMD curves diverge, and never intersect. In a conventional receiver, IP3 is the
convergence point of the transfer and IMD curves.

• As the ADC clock is the only significant phase noise source, a very low noise
crystal clock oscillator almost eliminates reciprocal mixing noise.

– RMDR is so high (>> 100 dB) that even the very best crystal oscillators as test signal sources
can degrade the measurement.

9 October 2015 19HF Receiver Testing

The IP3 Problem in an ADC

209 October 2015

IM3 product increases 3 dB per dB of input power IM3 product is nearly independent of input power
(0 dBFS = ADC clipping level)

Legacy receiver Direct-sampling SDR

HF Receiver Testing

30

The effect of dither on IMD
Try this with your old rig!

219 October 2015

Dither breaks up IMD
products into noise
which degrades RX
noise floor by 3 dB.

HF Receiver Testing

The DR3 Problem:
Perseus SDR vs. legacy receiver

229 October 2015 HF Receiver Testing

31

The DR3 Problem:
discussion

• The chart (see previous page) shows that the DR3 of a direct sampling
receiver is unusable as a predictor of dynamic performance.

• DR3 increases with increasing input power, reaching a “sweet spot” at 10
dBFS, then falling off rapidly as 0 dBFS (ADC clip level) is approached.

– By contrast, DR3 of the legacy receiver decreases with increasing input power.
• A new method for specifying receiver IMD is proposed: measure the absolute

power of interferers (IMD products and spurs) against 2 tone input power,
with the ITU R P.372 band noise levels for typical urban and rural sites at the
frequency of operation as datum lines. We term this IFSS (interference free
signal strength).

– If the interferer is below the band noise at the user site, the band noise will mask it
and it will not be heard.

• The IFSS method allows comparison of SDR and legacy receivers.

9 October 2015 23HF Receiver Testing

IFSS IMD Power Measurement
in SDR’s and legacy receivers

• We measure the absolute amplitude of each interferer (IMD product or spur)
and draw a chart of interferer amplitude vs. per tone test signal power at a
500 Hz detection or IF bandwidth.

– The ITU R P.372 2 band noise levels for typical rural and urban sites (see next page) are shown
as datum lines (103 and 109 dB at 14 MHz, respectively.)

• If the interferer is below the band noise, it can be disregarded.
• The IFSS method eliminates the "sweet spot" problem in DR3 measurements

on SDR's, and is valid for SDR and conventional receivers.
• The legacy receiver will often need front end attenuation to bring its MDS

into line with that of the SDR, which is 10 dB worse as a rule.)
• The IFSS test method allows us to compare the IMD vs. input power

performance curves of a direct sampling SDR and a legacy receiver on a
common chart as shown on p. 26.

9 October 2015 24HF Receiver Testing

32

ITU R band noise levels
(Courtesy ARRL)

259 October 2015 HF Receiver Testing

IMD vs. input power (IFSS):
Direct sampling SDR vs. legacy receiver

269 October 2015

For the Perseus,
the IMD curve is
 1st-order until

-25 dBm input
level, then rises
rapidly to 3rd-
order due to IMD
in active stages
ahead of ADC.

HF Receiver Testing

33

Measuring dynamic range is easy
but how do we measure absolute interferer levels?

• On a direct sampling SDR, we can read the observed IMD product and
interferer levels directly off the S meter or spectrum scope.

– The scope and S meter level calibration should be checked before taking these
readings.

– A preamp ahead of the ADC will degrade IMD.

• On a legacy receiver, the procedure is more complex.
– Read recovered audio level of IMD product or interferer on level meter.
– Next, apply a single tone test signal to the DUT RF input and adjust input power to

obtain same level meter reading. (AGC must be on.)

• IMD product/interferer levels can also be read off a legacy receiver’s
calibrated signal strength meter.

9 October 2015 27HF Receiver Testing

Other considerations for HF receiver testing

• The measurement of second order IMD dynamic range (DR2) is still
useful in SDR testing, as 2nd order mixes in active stages ahead of the
ADC can cause HF BCI.
– Example: 41m BCI on the 40m amateur band in Region 1.

• Image rejection and IF leakage measurements are not applicable to
direct sampling SDR’s.

• The noise power ratio (NPR) test is a useful tool for identifying
impairments in SDR and conventional receivers.
– If a complete NPR test set (noise generator and noise receiver) is

available, it can be used also for testing 2 port networks (amplifiers,
filters etc.)

• http://www.nsarc.ca/hf/npr.pdf

9 October 2015 28HF Receiver Testing

34

References for further study

1. http://www.itu.int/rec/R REC P.372/en

2. http://tinyurl.com/testproc2011 (ARRL Test Procedure Manual, 2011)

3. http://www.nsarc.ca/hf/npr.pdf

4. http://www.ab4oj.com/test/docs/npr_test.pdf

9 October 2015 29HF Receiver Testing

35

AMATEUR RADIO EMERGENCY DATA NETWORK
AT THE CENTER OF EMERGENCY COMMUNICATIONS PREPAREDNESS

Andre Hansen, K6AH
The AREDN Project (AREDN.org)
2113 Via Monserate
Fallbrook, CA 92028
K6AH@ARRL.net

Abstract

Mesh technology has been around for over ten years. Over the past two years developers on the
AREDN™ team have advanced the art by porting Broadband-Hamnet’s extremely popular mesh
firmware to the Ubiquiti airMAX line of commercial Wireless ISP routers. This has literally changed
the complexion of mesh implementations from an experimental, hobby-oriented, novelty into a viable
alternative network suitable for restoring some degree of Inter/intra-net connectivity “when all else
fails.”

More recently, the developers of this software have kicked-off a new project, AREDN, focused on
taking this technology to the next level in EMCOMM communications.

This paper begins with an introduction to the AREDN Project and mesh networking and concludes
with a roadmap for the Project’s future. It dives into implementation techniques and considerations as
well as avoidable pitfalls.

Keywords: AREDN, EMCOMM, mesh, BBHN

Introduction

The typical Emcomm message-passing scenario today involves the sender conveying the message to a
ham, who transcribes it onto an ICS-213 form. Then the message is spoken over VHF/UHF radio to
another ham who writes it down on another ICS-213 form. The form is then delivered to the recipient,
who reads it and signs it. The acknowledgement is then conveyed back over the radio to the sending
ham who confirms the receipt to the originator.

Emcomm “Customer” expectations aren’t being met

Customer expectations differ wildly than this. They expect the continued use of tools with which they
are accustomed: email, phone service, chat, and other web-based tools specific to their roles within the
organization.

TM

36

Over $4B in ham-compatible radios is sold to non-hams each year and most hams wouldn’t recognize
them to be ham radios. These devices follow the 802.11 standard and operate in several of our
microwave bands. They are all around us, and coupled with the privileges our license offers, we
should be using this technology to deliver on these customer expectations.

So what is AREDN?

AREDN is an RF network mesh of radio/routers operating under the FCC rules, Part 97 in the ham
microwave bands, controlled by hams with a Tech license or higher. It is a high-speed data network
with rates of up to 54 Mbps designed to provide a TCP/IP medium when other network infrastructure
has failed. While technically capable, it is not intended to be a general Internet access alternative.

AREDN is written for Linux-based WIFI and WISP devices by the AREDN Development Team which
also authored the BBHN (Broadband-Hamnet) releases from v1.0.1 to 3.0.1.

AREDN replaces the manufacturer’s operating system with the following major components:

1. OpenWRT, an OpenSource wireless routing framework onto which custom applications can be
built

2. OLSR (Optimized Link State Routing Protocol), an IP routing protocol optimized for dynamic
ad hoc networks

3. Web-based GUI for node configuration
4. Automatic device-specific TCP/IP network configuration based on the device MAC address

The primary objectives of the project are to empower the typical ham to become a deployable part of
the network by simply installing the firmware, entering the station’s call-sign and an administrative
password, and then pointing the node’s antenna toward an existing network node.

The secondary objectives are to provide a means to monitor & manage the network and to specify a set
of operational standards & services for Emcomm’s utilization of the technology.

To date this technology has attracted 3 very different user types:

1. Look at the cool things you can do! They’re intrigued by the autonomous nature of the network
and quickly setup neighborhood networks for gaming, VoIP, etc. They tend to attract other
computer types who may be enticed into Ham Radio as a result.

2. Applying it toward a need. These guys weren’t looking for it, but see the value in it and apply
it toward a specific need, such as Field-Day logging, race support, surveillance cameras, etc.

3. Those who have longed for it… To these guys, the technology is game-changing. They are in
the process of exploiting it by building infrastructure around it.

This last type include the Emcomm guys. They are the primary target of this technology and the focus
of the AREDN™ Project.

37

How it works

It is easier to understand this technology if we start with how standard WIFI works.

In the diagram above, we see two distinct “domains.” The User domain includes both wired and
wireless devices. These are all in the same address space and nothing distinguishes them aside from
how they connect to the WIFI router.

The second domain is for the Internet. You will note a firewall protects the User domain from
unauthorized access and other threats from the external domain.

How AREDN “repurposes” the device

38

What were two domains in our Standard WIFI diagram have now become three. We see the familiar
external and user domains... although the user domain now contains a WIFI router and new computers
which, in this case, deliver services such as email, FTP, VoIP, chat, etc.

The new domain here is an RF mesh network which forms the business end of the AREDN
technology.

The Hardware

I’ll use this term “mesh” to describe the interconnection of devices, and “nodes” to describe the
devices. Nodes are typically comprised of a Linux computer, a software-defined radio operating
within a predefined microwave band, and a strip-line amplifier. Some utilize an on-board transverter
as a means of reusing an existing device in another band. The computer has at least one Ethernet port,
although some have two with an internal hub or switch. All of these components are contained within
the single node. The radios contain either internal antenna or one or two antenna ports. These radio
receivers are hot… with sensitivities in the range of -95dBm. Power output is in the range of 23 to 28
dBm (200 to 600 mW).

Historically, Ham Radio mesh networks have been built on Linksys WRT54 devices intended for
home and office use. These lower-powered (19dBm, 79mW) units have required environmental
protection when used outside, and as a result have been difficult to utilize in meshes extending beyond
the neighborhood. Over the past 2 years AREDN developers have extended existing mesh technology
to environmentally robust, commercially available, Ubiquiti, hardware. The devices supported are
currently manufactured by Ubiquiti under their product group “airMAX” and the TP-LINK “Pharos”
series. Support of these devices has literally changed the complexion of mesh implementations from
an experimental, hobby-oriented, novelty into a viable alternative network suitable for restoring some
level of Inter/intra-net connectivity when “all else fails.”

The ARDEN software supports these devices on the 900 MHz, 2.4 GHz, 3.4 GHz and 5.8 GHz
Amateur Radio bands.

39

How OLSR Works

Optimized Link State Routing determines the best path for data transmission through the network.

The four devices illustrated above, all Ubiquiti NanoStations, have formed a “mesh.” The route data
will take through this network is dependent on the quality of the links between them. Note the link
between Node A and Node B. From historical broadcast reception, Node A knows that 80% of the
data from Node B is received without error. In addition, Node B knows from historical reception, that
data from Node A is received without error 100% of the time… it is said to be 80% reliable based on
the following formula, where LQ = Link Quality and PL = % Packet Loss

LQ = PL x PL
 A B B A

LQ = .8 x 1

LQ = 80%

Based on this, it assigns a “cost” (or ETX, estimated transmission) to the A B link inversely
proportional to the Link Quality:

Cost (aka ETX) = 1/LQ = 1/.8 = $1.25
 A B

All traffic from A to B will take this path, because it is the least expensive route available. To
determine the path through multiple nodes, the individual link costs are simply summed.

If the link between A and B where to fail, then Node A would quickly calculate an alternate path. Two
are available:

 Path A-C-B at a cost of $1.00 + $2.10=$3.10
 Path A-C-D-B at a cost of $1.00 + $1.00 +$1.00= $3.00

B

A

C

D

40

Node A’s routing table is updated with the new optimal path of A-C-D-B. These updates are
performed multiple times each second, with routing table propagations through the mesh taking some
amount of additional time depending on the size of the mesh.

What the GUI does

The Graphical User Interface is generated using HTTP by the AREDN software running on the
embedded Linux computer. The GUI provides access to a variety of administrative and operational
functions, such as:

 Checking for traffic / congestion on the channel
 Reporting the current node status and other nodes both directly or indirectly connected
 The basic node configuration settings
 More advanced administrative setting for

o Port Forwarding / DHCP / Advertised Services
o Network Address Translations for complex network environments
o Updating the AREDN firmware
o Installing useful service packages on the node

41

How Do I Build an AREDN Network?

Building an AREDN network is not difficult:

1. We encourage one to have a specific objective before you begin. That may be simply to
understand the technology, but such an objective should not creep into a production
implementation without restarting with that new objective.

2. The next step is to plan and deploy core nodes onto which mesh is formed. These nodes form
an initial, primary path for network traffic. Note that they may or may not retain that
distinction as the mesh grows.

3. Setup purposeful services that align with your objective and user requirements.
4. Utilize the mesh routinely to ensure it is operational and will be so with needed.

Supported Device Details

Ubiquiti airMAX M-series wireless routers share the following general characteristics:

 They are tower mountable and environmentally robust:
o Temperature: -40° to +176°F,
o Humidity: 5 - 95% Condensing

 Many utilize a combination of horizontal and vertically polarized antenna to minimize
unwanted interference from on-channel or adjacent WIFI noise. When conditions allow, they
also support the combining of these polarizations for increased data throughput—called MIMO
(Multi-In, Multi-Out).

Here are a few representative devices and characteristic selection criteria:

 Rocket – A two RF port MIMO node (500mW) that is “plug and play” with a variety of
Ubiquiti antenna systems: 90° and 120° Sector antenna, Dual-polarization Verticals, and 30-
34dBi Dish antenna. Note that MIMO nodes split the power between the vertical and
horizontal domains.

 Bullet – A single RF port high-power (600mW), non-MIMO node with an N-Type female
connector suitable for direct connection to many 3rd party antennas. With the right antenna this
could easily achieve ranges of 50+ km.

 NanoStation – A fully contained node with an internal 11dBi patch antenna and a 45° coverage
pattern.

 airGrid – A larger node available in several size/gain grid-reflector antenna configurations.
Designed to be a highly directive, it performs at a range of from 10 to 30 km

All of these devices obtain their operating power delivered over the CAT5 cabling (PoE or Power over
Ethernet). They have a broad DC input voltage specification to accommodate a wide range of cable
lengths which may be required for tower applications: 10.5 to 24VDC at the CAT5 connector.

42

In planning to deploy the core nodes it is advisable to use propagation prediction software such as
Radio Mobile to avoid the hassle and expense of experimentation. I will diverge for a bit for the
benefit of those unfamiliar with this type or software.

Radio Mobile is a free propagation simulation system. It utilizes data from the Space Shuttle Radar
Terrain Mapping Mission (SRTM) resulting in elevation contours which have then been overlaid with
satellite imaging and road maps. It further utilizes the Longley-Rice radio propagation prediction
method, which computes the attenuation of radio signals using an “irregular terrain model”... a
technique that has been successfully used in commercial radio coverage planning since the 1960’s.

It is available both as a software download and a Web-based tool. While the download results in a
more flexible tool, its installation is not for the faint-of-heart. I would advise that, if you do not
consider yourself a computer expert, then the Web-based tool will more than adequately meet your
needs. The English language portal is at: http://www.cplus.org/rmw/english1.html

Sufficient use of this tool to explore the variables of band, node-model receiver sensitivity, and node-
model power output, will result in the required antenna gain in either point-to-point (PtP) or point-to-
multi-point (PtMP) topologies.

Here are a screenshot from a typical Radio Mobile analysis:

43

In my planning for a mesh in northern San Diego County, I secured a location in the Bonsall area. The
marker locates the potential node(s) under review… in this case a pair of 2.4 GHz Ubiquiti Rocket
nodes with 120° sector antenna, one pointed in the general southwest direction and other to the
northeast. Based on the specific parameters I entered for these nodes the green-shaded areas will hear
the node under review at approximately 9.5μV (-87.5dBm, 7.5dB above the receive sensitivity) and the
yellow area at about 3μV (-97dBm, 2dB below the limit of the receiver sensitivity).

I was interested in connecting this cluster of nodes to a high-ground “backbone” node recently placed
near Mt Palomar, a 5000’+ peak directly to the east.

The analysis proves out the viability of the prospective link with a more than ample fade margin of
26dB. The author normally considers a margin of 15dB or more as adequate in most instances.
Whether this is achievable is highly dependent on the RF environment the node is being placed. Under
ideal circumstances you want to take advantage of the full receiver sensitivity (approx. -95dBm for
most Ubiquiti devices). But this may not be possible if there is in-band competing activity from other
nodes, or other RF sources. For any given situation, it is the signal-to-noise ratio (SNR) that is
important, not the signal strength above the receiver’s sensitivity. SNR is also expressed in dB. For
example, if the noise floor at a given location is -85dB, then you would need a received signal strength
of -70dBm in order to achieve an SNR of 15dB. Remember that Radio Mobile, or any other predictive
software is not knowledgeable of the noise environment you will encounter. So uncertainty will
remain until you visit the prospective site and confirm this variable.

44

Power Density

As hams we generally don’t concern ourselves with too much with power density. Common
modulation techniques such as CW, SSB, AM, FM are relatively narrow, but that’s not the case with
802.11b which uses direct sequence spread spectrum (complementary coded keying - CCK) or
802.11a/g which utilize orthogonal frequency division multiplexing (OFDM). The AREDN software
allows user-selectable bandwidths of 5, 10, and 20 MHz.

So why would a user want to reduce the bandwidth… and the corresponding maximum throughput of
the link? The answer is, to increase the signal-to-noise ratio. Each halving of the bandwidth will
improve the SNR by 3 dB. Therefore, going from 20MHz to 5MHz has a 6dB improvement. This can
easily represent the difference between a reliable link and problematic one.

Fresnel Zones

One more technical concept you need to be cognizant of is Fresnel (pronounced “fren-l”) Zones. They
are imaginary oblong lines which emanate from one node to another resembling an elongated cigar.
The primary cigar represents an area within which interfering objects will cause destructive signal
reflections at the receiving end. This is also referred to as “multi-pathing.” The formula for
computing this area is closely approximated by the following simplified formula:

This zone should be clear of all obstructions, including vegetation. If your modeling exercise is not
playing out in the real world, the likely culprit is an obstruction in the Fresnel Zone. Notably, the 900
MHz band is tolerant of some vegetation in this zone.

For those less mathematically adept, here are some examples:

900 MHz at 10 miles = 60’ 900 MHz at 20 miles = 85’
2.4 GHz at 10 miles = 37’ 2.4 GHz at 20 miles = 52’
3.4 GHz at 10 miles = 31’ 3.4 GHz at 20 miles = 44’
5.8 GHz at 10 miles = 24’ 5.8 GHz at 20 miles = 33’

45

Conceptual AREDN Network Implementation

Below is a conceptual layout of an AREDN network’s core nodes:

While the term “mesh networking” implies a peer relationship between nodes, a structured core of nodes
is defined to establish an initial, predictable path for the network. Three node types are illustrated.

 Ham-Deployed Last Mile Node: As the name indicates, this node is carried by the Ham deployed
to a served-agency location requiring the pre-established data services. The “Go-Kit” is
comprised of a 2.4 GHz node, or for longer, outlying areas a 900 MHz node with a high-gain
antenna pointed at a Mid-Mile Node. The kit also contains a WIFI router to provide network
access for the local devices on site. Batteries or a generator powers these devices.

 Mid-Mile Node: This node is either fixed or vehicle deployed as necessary and per the specific

network’s design. It forms a “reachable” collection point for surrounding Last Mile Nodes and
has the required higher-gain antenna to reach a higher-ground based Backbone Node. Sector
antenna(s) allow broad downstream accessibility.

46

 Fixed Backbone Node: These nodes are permanent installations that extend the mesh to the

extreme corners of the planned coverage area. For reliability they operate on the least congested
band and are optimized for data throughput. Again here, sector antenna(s) are utilized to
maximize their downstream accessibility to Mid-Mile Nodes.

Deployment Challenges

One of the most challenging aspects of a mesh implementation is inter-connecting “mesh islands” that
have formed in the more-easily meshed areas. Without a competed mesh network, it is difficult to
justify the expense/effort of building out network services (email, Voice-over-IP (VoIP) telephony, web-
based utilities, etc.) which are needed to demonstrate the network to prospective EMCOMM clients. It
may also be difficult to justify the expense of acquiring strategic high-ground properties necessary to
connect the mesh-islands.

The interim solution AREDN has provided is based on Internet tunneling. This involves setting up an
encrypted tunnel between one tunnel server-node and one node in each of the other mesh-islands. This
has the effect of connecting all participating mesh-islands together in the same network. In doing so,
you can gain the benefits of having completed the network and, at the same time justify the build-out of
IP-based services for the users and demonstrate the utility to prospective customers.

While tunneling is an effective way to gain that critical mass, it is a poor strategy for EMCOMM
deployment and should only be used as a temporary means of achieving a specific goal. Tunnels will
likely not be functional in a real disaster.

A Roadmap for the Near Term

The AREDN Development Team recognizes that the following important improvements are warranted
and is commitment to the advancement of this technology.

All users
have
access to
the
services

47

A More Advanced GUI – More advanced users have taken to other network devices in deploying more
sophisticated network topologies. We are committed to providing an optional, more advanced GUI to
allow for the configuration of these progressive designs. The effort will preserve the auto-configuration
features for the non-network savvy Hams.

Network Management with SNMP – Utilizing the Simple Network Management Protocol, the AREDN
network should be manageable using any number of standard tools in use today. Customized MIBs
(Management Information Bases) will be developed specific to this technology.

These tools will allow visualization of the mesh against a map background, see the network throughput
at a node-interface level, locate choke points within the network that would benefit from improved RF
quality and bandwidth, and be alerted to segment outages.

Quality of Service (QoS) – Critical traffic needs priority. EMCOMM data during a disaster must not be
hampered by casual traffic. Therefore, some form of Quality of Service is warranted. We are not
certain how this would best be implemented, but will likely require some advanced configuration or
certification at the user-level.

Operations outside of the ISM bands – The available Ham band is broader than the Ubiquiti and TP Link
devices support in their manufactured form. There would be great value in moving the device off the
ISM-portion of the band in terms of reduced interference and higher resultant SNR. We are exploring
this and believe this will be possible.

Preserving the 3.4 GHz band – Having recently released software supporting devices in the 3.4 GHz
band, the team is just coming to realize the huge asset this band represents. This band has no
commercial allocation in the US and is considered to be in jeopardy of loss to commercial interests.
With the exception of some military radar, there is little interference, making it the quietest of
alternatives. A Ham presence, particularly in the EMCOMM space, could prove useful in retaining it
for Ham purposes.

AREDN Team Developed Deployments – The number of network deployments utilizing this technology
are too numerous to list, however it is fair to say that groups in most major US cities are, at a minimum,
exploring this technology as well as major cities in Canada and Europe.

Where 2 years ago I was begging for speaking opportunities, they now approach me. I am certain we
are past the tipping point.

How One Gets Involved – Most local deployments start at a grass-roots level. It is an excellent way to
span the gap between radio and computer technologies… and, if approached correctly, can attract a new
generation to Ham Radio. Larger implementations deserve a network specialist, so I encourage you to
find one early. Hams tend to become overwhelmed with the networking elements, so having someone to
offload that worry lets Hams worry more about the radio aspects of this technology than the data.

48

There is a fabulous getting-started primer entitled “Wireless Networking in the Developing World”
which I encourage anyone interested in this technology to read. It is available for free as a PDF
download at: www.wndw.net.

Conclusion

There are a variety of mesh network systems today. AREDN is unique in that it operates under Part 97
under the authorizations inherent in our Amateur license grant. It is easy to configure and is deployable
by typical hams to served agencies without any knowledge of data networking or the design of the mesh
to which a node is being connected. It can be used to provide a variety of IP-based services or to restore
failed intranet-based agency services.

The AREDN Project team provides support via its website at www.aredn.org to Emcomm groups
wishing to deploy this technology.

The AREDN logo is a copyright of Randy Smith, WU2S, and is used with permission.
Broadband-Hamnet is a trademark of the Broadband-Hamnet, Inc.
airMAX, NanoStation, airGrid, Bullet, and Rocket are trademarks of Ubiquiti Networks, Inc.
TP-LINK and Pharos are trademarks of TP-LINK Technologies, Co., Ltd.

The AREDN software is distributed and licensed for use under the Free Software Foundation’s General
Public License, GPLv3 license. A copy of that license and source is available at the project’s web site:
http://www.aredn.org.

49

Feher Modulation 16 QAM

Patrick Jungwirth, PhD
US Army RDECOM
Aberdeen Proving Ground, MD 21005

Abstract

We present simulations of conventional quadrature amplitude modulation (QAM) and Feher-QAM to
estimate the bandwidth improvement for Feher-QAM. We show more than a 10% improvement
(reduction) in bandwidth for Feher-QAM over conventional QAM. We also show the power spectral
density for Feher-QAM has a much faster convergence than conventional QAM.

Conventional digital modulation techniques are limited by embedded rectangular windowing functions.
Some more advanced modulation techniques utilize raised cosine windowing functions (filters) to improve
sidelobes. Feher modulation uses a half cycle raised cosine waveform to reduce bandwidth and improve
sidelobe attenuation. Feher modulation offers the equivalent power spectral density convergence of a
raised cosine windowing function with twice the width (half the bandwidth). All symbol transitions in
Feher modulation are smooth and occur at zero slope points. The smooth, zero slope transitions help
improve intersymbol interference, and reduce timing jitter problems.

Key words: Feher modulation, QAM, Feher-QAM

1. Introduction

We present a short introduction to Feher, half cycle raised cosine, modulation. Feher modulation consists
of half cycle raised cosine functions concatenated together to form a smooth function. For the symbol
sequence {0, 1} a step change occurs when transitioning from 0 to 1 in conventional modulation. In Feher
modulation, the symbol transition occurs over a full symbol time. The sequence {0, 1} is mapped to a
positive going half cycle raised cosine waveform, , with gain = +1 in (1.1). The sequence {1, 0} is
mapped to a negative going half cycle raised cosine waveform, , with gain = -1 in (1.1). The sequences
{0, 0} and {1, 1} are mapped to a zero slope line segment, , as shown by gain = 0 in (1.1).

The mapping of serial data {0, 1, 1, 1, 0, 0, 1} to Feher modulation is illustrated in Figure 1.1. The initial
symbol (condition) is assumed to be 0. The 0* to 0 transition is mapped to a zero slope line segment
(where 0* is the assumed initial symbol). The next symbol transition is 0 1 which is mapped to a positive
going half cycle raised cosine waveform, . The 1 1 transition is mapped to a zero slope line segment,

. The 1 1, 1 0, 0 0, and 0 1 mappings are also shown in Figure 1.1. As illustrated in Figure 1.1

Half Cycle Raised Cosine
 (basis function)

Gain = 0Gain = -1 Gain = +1

 (1.1)

50

Feher modulation is a smooth function with zero slope points occurring at the serial data symbol transition
points (dashed vertical gray lines). Figure 1.1 also shows that each half cycle raised cosine waveform
(gain = -1, 0, and +1) occurs over one serial data symbol time.

0

1 1 1

0 0

1

Bit Transitions

 In
iti

al
 C

on
di

tio
n

is

Smoothed Symbol Transition Modulation

Smooth, Zero Slope Transition Points

Serial Data

0 1 1 1 1 1 0 1 0 0 0 10* 0

0*

10 1 1 0 0 1

Figure 1.1. Feher Half Cycle Raised Cosine Modulation

2.0 Windowing Functions

Equation (2.1) introduces the unit step function. The unit step function is used to create the rectangular
windowing function in (2.2). Equations (2.2) through (2.5) introduce a number of windowing functions.
When data is sampled over a finite length of time, the resulting function is equivalent to a rectangular
windowing function times an infinitely long function. The rectangular windowing function has slow
(poor), power spectral density convergence as illustrated in Figure 2.1. To
improve the convergence of sampled data, a raised cosine windowing function is used to reduce the effects
of the rectangular windowing function.

For the serial data stream in Figure 1.1, the step changes embed rectangular windowing functions in the
serial data’s power spectral density [1-5]. From a practical point of view, Feher modulation minimizes
the slope when transitioning from serial data symbol, n, to the next serial data symbol, n+1. Full cycle
raised cosine modulation, and overlapped raised cosine modulation are described in [6-8].

The half cycle raised cosine windowing function (2.5) has the same power spectral density convergence
as a raised cosine window with twice the width (2.4). In section 4, simulations are used to determine the
bandwidths for conventional quadrature amplitude modulation, and Feher-QAM. We will show in
sections 4 and 5 that the half cycle raised cosine windowing function results in more than a 10 % reduction
in bandwidth for 16 quadrature amplitude modulation.

Feher Modulation

51

Unit step function, (2.1)

Rectangular windowing function (width = 2)
 (2.2)

Raised Cosine windowing function (width = 2)

 (2.3)

Raised Cosine windowing function (width = 4)

 (2.4)

Half Cycle Raised Cosine windowing function

 (2.5)

Figure 2.1. Windowing Functions

Spectrum Analyzer Display

Frequency
0 .2 .4 .6 .8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

P
ow

er
S

pe
ct

ra
lD

en
si

ty
(d

B
m

/H
z)

-80

-70

-60

-50

-40

-30

-20

-10

0

10

20

30
Rectangular Window

Raised Cosine Raised Cosine (2w)

Half Cycle Raised Cosine

52

3.0 Quadrature Amplitude Modulation (QAM) Background

 Quadrature amplitude modulation(QAM)

 and values are found in the
diagrams in Figure 3.1 and Figure 3.2.

fc = carrier frequency in Hz
 (3.1)

Equation (3.1) provides the general definition for quadrature amplitude modulation. Cosine and sine terms
are multiplied by I(t) and Q(t) signals respectively. The term I(t) is in-phase with the cosine carrier and
Q(t), the quadrature phase term, is 90º (radians) out of phase with the cosine carrier. Figure 3.1 presents
the constellation diagram for 4 level QAM which is equivalent to 4 level phase modulation. We see the
points on the constellation diagram all have a radius of 1 with phase angles at ±45º and ±135º (and
radians). The angle sum identity shows 4 level QAM reduces to phase modulation. This is a special case;
in general the I and Q terms create both amplitude and phase modulation.

In
-P

ha
se

,I
(t)

Quadrature Phase, Q(t)

-1

+1

(r,) = 41,()

+1
-1

(r,) = 3
41,()

()(r,) = -3
41, ()(r,) = -

41,

cos(2 f t +) = cos()cos(2 f t) - sin()sin(2 f t)
c c c

Figure 3.1. 4 Level QAM or 4 Level Phase Modulation

Message = “DSP” = 0x44; 0x53; 0x50 (where 0x0x## indicates a hexadecimal number) {3.1}

We present an example message = “DSP” to show how ASCII characters are converted to 16 level
quadrature amplitude modulation. The message “DSP” in {3.1}, converted to ASCII code gives
“D” = 0x44, “S” = 0x53, and “P” = 0x50. For 16 QAM in Figure 3.2, there are 16 symbols {0x0, 0x1,
0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9, 0xA, 0xB, 0xC, 0xD, 0xE, 0xF}. Each group of 4 bits from the

53

message “DSP” is converted to a (I,Q) vector representation for 16 QAM modulation. Figure 3.2 shows
the 4 bit code to 16 QAM look-up table. For “D”=0x44, the 4 bit groups are 0x4; 0x4, the (I,Q) vector
for 0x4 is (0.75, 0.25) volts. Equation (3.2) shows the (I,Q) vector values for the message in {3.1}. The
QAM signal, s(t) as shown in (3.1), is calculated from the n-th (I,Q) vector and the cosine and sine carrier
terms.

Figure 3.3 shows a 16 level QAM modulator block diagram and simulation. Figure 3.3 clearly shows step
functions present in 16 QAM. The embedded step functions (rectangular windowing functions) result in
a sin(x)/x power spectral density function as shown in Figure 3.3.

(I, Q) = (+0.75, +0.25), (+0.75, +0.25); (+0.25, +0.25), (-0.25, +0.75); (-0.25, +0.25), (+0.75, +0.75) (n)

Message = “DSP” = 0x44; 0x53; 0x50

“D” = 0x4; 0x4 “S” = 0x5; 0x3 “P” = 0x5; 0x0

 (3.2)

In
-P

ha
se

,I
(t)

Quadrature Phase, Q(t)

+0.5 +0.75+0.25-0.5-0.75 -0.25

-0.5

+0.5

-0.25

+0.25

+0.75

-0.75

vo
lts

volts

00010302

04050706

0c0d0f0e

08090b0a

16 QAM Symbols
in hexadecimal

Figure 3.2. 16 QAM Constellation Diagram

Time Domain Waveform

Symbol
Source 16 QAM I/Q

Modulator

(I,Q)(n)

fcarrier

QAM
Output

Power Spectral Density
Figure 3.3. 16 QAM Modulator Block Diagram

54

4.0 Feher-Quadrature Amplitude Modulation (QAM)

Feher quadrature amplitude modulation (QAM) is similar to the binary example in Figure 1.1. Serial
binary data consists of two amplitude values +1 and -1 (or 1 and 0). 16 QAM consists of 4 amplitude
values for I and 4 amplitude values for Q. As illustrated in Figure 3.2, the 4 amplitude values are -0.75,
-0.25, +0.25, and +0.75. The half cycle raised cosine functions are gain scaled by (4.1) to connect the
(I,Q) QAM symbols together. For the half cycle raised cosine waveform, the initial value, DC_Offset(n)
in (4.2), is the final value from the previous symbol. HRC(t) in (4.3) generates unit amplitude, half cycle
raised cosine waveforms. Feher QAM in (4.4) is a unit half cycle raised cosine, HRC(t) in (4.3), gain scaled
by (4.1), plus the final value from the previous (I,Q) vector in (4.2).

Gain(n) = (I, Q)(n) - (I, Q)(n-1) (4.1)

DC_Offset(n) = (I, Q)(n-1) (4.2)

H (t)RC = 1
2

+ 1cos(2 f)
sym

 (t) =

Periodic Half Cycle Raised Cosine

Where (t) is the sawtooth function

 (4.3)

Feher_QAM(t) = HRC(t) • Gain(n) + DC_Offset(n) (4.4)

Figure 4.1 shows a block diagram implementing Feher modulation algorithm for 16 QAM. Vector
operations are shown as thick lines. Scalars are shown by thin lines. The most complicated part of Feher
modulation algorithm is the unit half cycle raised cosine generator, HRC(t) in (4.3). The rest of the
operations are vector addition and scalar multiplication. A look-up table (Figure 3.2) converts 4 bit
numbers to 16 QAM symbols.

Conventional QAM and Feher QAM are compared in Figure 4.2. The half cycle raised cosine waveforms
form smooth curves from (I,Q)(n-1) to (I,Q)(n). The Feher QAM waveforms are smooth functions without
step changes. At each conventional QAM symbol transition, Feher QAM has a zero slope. Each half
cycle raised cosine requires a full conventional QAM symbol time to change state. Figure 4.1 shows a
Feher 16 QAM modulated waveform. It is a smooth function without any step changes.

Figure 4.3 and Figure 4.4 compare simulations of conventional 16 QAM to Feher 16 QAM. Figure 4.4
shows an expanded scale highlighting the main lobes. Conventional QAM has a sin(x)/x power spectral
density function with a slow convergence. Feher QAM has a narrower main lobe with a much faster
convergence (cosine-like windowing function). Section 5 compares bandwidth and convergence for
conventional QAM and Feher-QAM.

55

SymbolSource

16 QAM I/QModulator

(I,Q)(n)

fcarrier

SSTM-QAM
OutputSSTMQAM

SSTM (I,Q)(n)

1

Vector InputQAM (I ,Q) Delay

-

Half Cycle Raised Cosine waveform (scalar)

Gain(I, Q)

DC
Offs

et(I,
Q)

Vector OutputSSTM-QAM(I ,Q)X

(I,Q)(n) (I,Q)(n-1)

H (t)RC0.5cos()

1Symbol Timef = A = 1pk-pk

SSTMQAM

Time Domain Waveform

Power Spectral Density

SSTM-QAM Algorithm Figure 4.1. Feher-QAM Block Diagram.

-.8

-.4

0

.4

.8

-.8

-.4

0

.4

.8

In-p
has

e(V
olts

)
Qua

dra
ture

-ph
ase

(Vo
lts)

0 .02 .04 .06 .08 .1 .12 .14 .16 .18 .2 .22 .24 .26 .28 .3Time in seconds

SSTM I(t)I(t)

SSTM Q(t)Q(t)

Conventional 16 QAM and SSTM 16 QAM In-phase and Quadrature Phase

 Figure 4.2. Simulated QAM and Feher QAM Waveforms

Feher Modulation

Feher (I,Q)(n)

Feher QAM

Feher QAM

Conventional QAM and Feher 16 QAM In-phase and Quadrature Phase

Feher I(t)

Feher Q(t)

Feher I(t), Q(t)

Symbol
Source

16 QAM I/Q
Modulator

(I,Q)(n)

fcarrier

SSTM-QAM
OutputSSTM

QAM

SSTM (I,Q)(n)

1

Vector Input
QAM (I ,Q) Delay

-

Half Cycle Raised Cosine waveform (scalar)

Gain(I, Q)

D
C

O
ffs

et
(I,

Q
)

Vector Output
SSTM-QAM(I ,Q)

X

(I,Q)(n) (I,Q)(n-1)

H (t)RC
0.5cos()

1
Symbol Time

f =
A = 1pk-pk

SSTM
QAM

Time Domain Waveform

Power Spectral Density

SSTM-QAM Algorithm

Figure 4.1. Feher-QAM Block Diagram.

-.8

-.4

0

.4

.8

-.8

-.4

0

.4

.8

In
-p

ha
se

(V
ol

ts
)

Q
ua

dr
at

ur
e-

ph
as

e
(V

ol
ts

)

0 .02 .04 .06 .08 .1 .12 .14 .16 .18 .2 .22 .24 .26 .28 .3
Time in seconds

SSTM I(t)I(t)

SSTM Q(t)Q(t)

Conventional 16 QAM and SSTM 16 QAM In-phase and Quadrature Phase

Figure 4.2. Simulated QAM and Feher QAM Waveforms

Feher Modulation

Feher (I,Q)(n)

Feher
QAM

Feher
QAM

Conventional QAM and Feher 16 QAM In-phase and Quadrature Phase

Feher I(t)

Feher Q(t)

Feher I(t), Q(t)

56

Spectrum Analyzer Display

Frequency (Hz)

P
ow

er
S

pe
ct

ra
lD

en
si

ty
(d

B
m

/H
z)

-110

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

10

20

0 200 400 600 800 1000 1200 1400 1600 1800 2k

Conventional 16 QAM
Power Spectral Density

SSTM 16 QAM
Power Spectral Density

1000 Hz Carrier Frequency
100 Symbols/Second 16 QAM

Figure 4.3. Simulated 16 QAM and Feher-QAM Power Spectral Density

Spectrum Analyzer Display

Frequency (Hz)
800 850 900 950 1000 1050 1100 1150 1.2k

Po
w

er
Sp

ec
tra

lD
en

si
ty

(d
Bm

/H
z)

-60

-55

-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

5

10

15

20

Conventional QAM

SSTM-QAM

99 % Power Points
+/- 75 Hz

99 % Power Points
+/- 80 Hz

90 % Power Points
+/- 50 Hz

90 % Power Points
+/- 58 Hz

99 % and 90 % Power Points for
Main Lobe Only.

1000 Hz Carrier Frequency
100 Symbols/Second 16 QAM

Figure 4.4. QAM and Feher-QAM 90% and 99% Power Bandwidth Points

Feher 16 QAM

Feher QAM

57

5.0 Bandwidth Comparison

We simulated a 1000 Hz carrier frequency, 100 symbol/second conventional QAM modulator and Feher-
QAM modulator using the simulation tool in [9]. Table 5.1 only compares power bandwidth points for
the main lobes. As shown in Figure 4.4 the sidelobes for conventional QAM are much larger than Feher-
QAM. Including the first sidelobes in the power bandwidth calculation would show even a larger
improvement for Feher-QAM. Table 5.1 shows better than a 10 % improvement in the 90 % power
bandwidth points for Feher-QAM. Table 5.2 shows a 30 dB improvement in power spectral density
convergence at ±2fsym (2 times the symbol frequency). Tables 5.1 and 5.2, and Figures 4.3 and 4.4 show
improved (reduced) bandwidth and much better convergence for Feher-QAM compared to conventional
QAM.

Table 5.1. Bandwidth Points in terms of Symbol Frequency (100 Hz)

Bandwidth Points Conventional
QAM

Feher-QAM Improvement

90 % Power Points ± 58 Hz or ± 58 % ± 50 Hz or ± 50 % 13.8 %
99 % Power Points ± 80 Hz or ± 80 % ± 75 Hz or ± 75 % 6.3 %

Table 5.2. Convergence in terms of Symbol Frequency (fsym)

Symbol
Frequency

Conventional
QAM

Feher -QAM Improvement

±2fsym - 7 dBm/Hz - 37 dBm/Hz 30 dB
±4fsym -15 dBm/Hz -56 dBm/Hz 41 dB

6. Conclusion

We show that Feher-QAM has better than a 10% improvement in bandwidth and 30 dB improvement in
power spectral density at ±2fsym (2 times the symbol frequency). Feher modulation simply adds an
additional DSP stage prior to the final modulation stage as shown in Figure 4.1. Feher modulation is a
general technique and can easily be applied to other digital modulation techniques.

7. Acknowledgement

 The author wishes to thank RDECOM community for the opportunity to research Feher
modulation.

8. Disclaimer and Copyright

 Reference herein to any specific commercial, private or public products, process, or service by
trade name, trademark, manufacturer, or otherwise, does not constitute or imply its endorsement,
recommendation, or favoring by the United States Government. The views and opinions expressed herein
are strictly those of the author(s) and do not represent or reflect those of the United States Government.
 US Government work. Distribution statement A: approved for public release, distribution is
unlimited.

58

9. References

[1] K. Feher: “Filter,” US Patent 4,339,724, July 1982.

[2] P. Simon and T. Yan: “Performance Evaluation and Interpretation of Unfiltered Feher-Patented
Quadrature-Phase-Shift Keying (FQPSK),” NASA TMO Progress Report 42-137 May 15, 1999.
 http://ipnpr.jpl.nasa.gov/progress_report/42-137/137C.pdf.

[3] M. Simon and D. Divsalar: “Further Results on a Reduced-Complexity, Highly Power/Bandwidth-
Efficient Coded Feher-Patented Quadrature-Phase-Shift-Keying System with Iterative Decoding,” NASA
IPN Progress Report 42-146, August 15, 2001. http://tmo.jpl.nasa.gov/progress_report/42-146/146I.pdf

[4] P. Jungwirth: "SSTM,” AlaSim International Conference and Exposition,” Huntsville, Alabama,
6 – 7 May 2014. http://www.almsc.org/alasim-international.shtml

[5] P. Jungwirth: "SSTM,” TAPR Conference, Austin TX, pp. 32-51, September 5-7, 2014.
 https://www.tapr.org/pdf/DCC2014-SmoothedSymbolTransitionModulation-Patrick-Jungwirth.pdf

[6] G. Lili, et al.: "Symmetric Raised Cosine Keying Modulation and Performance Analysis," IEEE
International Conference on Computer Science and Network Technology, pp. 88-91, Dec. 2011.

[7] M. Simon, et al.: "Trellis-Coded Quadrature-Phase-Shift Keying (QPSK) With Variable Overlapped
Raised-Cosine Pulse Shaping," NASA TMO Progress Report 42-136, February 15, 1999.
 ipnpr.jpl.nasa.gov/progress_report/42-136/136F.pdf

[8] M. Austin, and M. Chang: "Quadrature Overlapped Raised Cosine Modulation," IEEE Transactions
on Communications Theory, Vol. Com-29, No. 3, pp. 236-249, March 1981.

[9] Visual Solutions: Vissim/Comm, www.vissim.com.

59

by

Ken Konechy W6HHC
W6HHC@ARRL.net

2015 ARRL/TAPR DCC

Update on
DATV-Express exciter

for Digital-ATV

2

DATV-Express
Abstract - The old technology of analog-ATV suffers from
susceptibility to snow and multi-path ghost images. Digital-ATV
(DATV) using new technologies like digital modulation, and
Forward Error Correction (FEC) can result in robust video reception
where analog-ATV fails, as well as providing more narrow
bandwidths on the ham bands. This presentation will review
progress by the DATV-Express Project Team since DCC2014. These
new efforts include:
• Making the exciter more portable by Hardkernel ODROID U3

Single-Board-Computer
• Support of Narrow-BandWidth DATV down to 0.5 MHz
• Using Express_Server software to provide video by UDP
• DatvExpressServerApp software on Windows (no Linux)
• A brief report on MiniTiouner USB-based Receiver Project

60

3

DATV-Express

The Presentation Author….

Ken W6HHC

4

DATV-Express

Digital-ATV technology allows Video Quality
to exceed analog-ATV

Comparison of analog video and an DATV video
using the same antennas with weak sigs

(courtesy of G7LWT & GB3HV)

61

5

DATV-Express

Status of Digital-ATV Today
• DATV Video Quality can exceed analog ATV
• European DATV is very active and growing

• Australia/New Zealand have lots of DATV activity

• More hams transmit DATV in USA over last 2 years

• DATV Transmitter was a cost barrier for most in USA
• Was US$900 up for MPEG/DVB-S Encoder/XMTRs

• HiDes DATV xmitter now $175, DATV-Express now $300

• Lot of focus today on “ham hackable” DATV Receivers

6

DATV-Express

The DATV-Express Team

• Charles Brain - G4GUO Ferring, England

• Ken Konechy - W6HHC Orange, CA, USA

• Art Towslee - WA8RMC Columbus, OH, USA

• Tom Gould - WB6P Portland, OR, USA

62

7

DATV-Express

DATV-Express Project

• Following 4 slides show the status at TAPR 2014

8

DATV-Express
DATV-Express SDR-based hardware board

63

9

DATV-Express
Overview of DATV-Express System

Typical System Block Diagram for DATV-Express DVB-S DATV Transmitter

10

DATV-Express
DATV-Express board internal block diagram

Block Diagram for DATV-Express Exciter Hardware Board

64

11

DATV-Express
DATV-Express System Specs

• DVB-S protocol is tested and released
• All IQ modulations (QPSK modulation was tested)
• Frequency Range:

70–2450 MHz (Modulator chip specification)
• Symbol-Rate:

– Adjustable: 0.33 to 5 MSymb/second
• RF output ~ 1-20 mW buffered (SMA connector)
• USB Video Capture card for NTSC or PAL
• PC Operating System – first Ubuntu-32/64-bit

12

DATV-Express
DATV-Express Project

Five areas of progress:

• Software for quad-ARM ODROID now released

• Support of Narrow-BandWidth DATV down to 0.5 MHz

• UDP function using Express_Server software

• DatvExpressServerApp on Windows (no Linux)

• SIDE BAR - MiniTiouner USB-based Receiver Project

65

13

DATV-Express
DATV-Express software for ARM ODROID U3

• ODROID U3 is quad-ARM “micro-PC” at 1.7 GHz
• Comes with Lubuntu 14.4 LTS (LDE Desktop)
• DVB-S protocol is now created inside FPGA

(off-loads the ODROID processing load)
• ODROID prepares the Transport Stream (TS) and

hands off to the FPGA
• Charles G4GUO explains that now DATV-Express

project has released for ARM…it should work OK
with almost any ARM product

• HardKernel has replaced model U3 with C1+ & XU4

14

DATV-Express

ODROID U3 is about the same size as Raspberry Pi

Hardkernel ODROID U3 “micro-PC”

66

15

DATV-Express

System Block Diagram for DATV-Express DVB-S with ODROID U3

Hardkernel ODROID U3

16

DATV-Express
Narrow-Bandwidth DATV with DATV-Express
• UK OfCom has allowed temporary use DATV on 2M
• Previously unused 146.0-to-147.0 MHz now allows digital
• DATV is being sent with Symbol Rate typically 333 KSymb/s
• Typically use H.264 video compression for 15 - 20 Frames/sec

• RF BWallocated = 0.5 MHz - Typically centered 146.5 MHz
• Selectable DATV-Express FPGA code uses x64 interpolater

for 100K to 400KSymb/sec
• Commercial DVB-S RCVRs only go down to 1 MSymb/sec
• New MiniTiouner RCVR project goes 125 KS/s to 27.5 MS/s

(more details later in presentation)

67

17

DATV-Express
Narrow-Bandwidth DATV with DATV-Express

DATV-Express Narrow-Bandwidth DVB-S of 0.5 MHz
Spectrum Analyzer span is 2 MHz

(courtesy of G4GUO)

18

DATV-Express
UDP feature using Express_Server
• Express_Server software was written by Charles G4GUO
• Better control for the receiving of UDP packets by the

computer connected to the DATV-Express transmitter board
• Configure DirectShow filters using GraphStudioNext graphs
• Can use LogiTech C615 webcam on Windows
• MainConcepts filters provided MPEG-2 encoding
• Software encoder filters eliminate Hauppauge video-capture
• MajorUDP-Sender filter aims UDP to computer connected to

DATV-Express

68

19

DATV-Express
UDP feature using Express_Server

Block Diagram for sending LogiTech web cam video by UDP to ODROID
running Express_Server

20

DATV-Express
UDP feature using Express_Server

GraphStudioNext filters for using C615 webcam on Windows
MajorUDP-Sender software block is aiming packets to ODROID IP address

69

21

DATV-Express
Using DatvExpressServerApp on Windows
• DatvExpressServerApp software written by Charles G4GUO
• DatvExpressServerApp runs on Windows system
• NO LINUX involved
• Use DirectShow filters using GraphStudioNext graphs
• Can use LogiTech C615 webcam on Windows
• MainConcepts filters provided MPEG-2 encoding
• MajorUDP-Sender filter aims UDP to loop-back IP-address
• DatvExpressServerApp provides a simple GUI
• DatvExpressServerApp software is still in a highly

“experimental stage”

22

DATV-Express
Using DatvExpressServerApp on Windows

Block Diagram showing the DatvExpressServerApp software runs
completely on Windows machine and connects to DATV-Express board

70

23

DATV-Express
Using DatvExpressServerApp on Windows

Windows running GraphStudioNext graphs and
simple GUI for DatvExpressServerApp

24

DATV-Express
Using DatvExpressServerApp on Windows

Properties of MainConcept video encoder filter using
ConstantBitRate (CBR)

71

25

DATV-Express
Using DatvExpressServerApp on Windows

Properties of MajorUDP-Sender software with IP destination address
aimed at loopback 127.0.0.1 and socket chosen for an arbitrary 1958

26

DATV-Express
MiniTiouner USB-based Receiver Project
• Jean Pierre F6DZP created DVB-S/S2 analyzer software
• “Digital transmissions are not really all-or-nothing -

in between there are many things that can happen” – F6DZP

• Original TuTioune software used PCI-based hardware
• New MiniTiouner receiver project is USB-based
• Software is “ham hackable” to allow fitting DATV needs
• Symbol Rates can be from 125 KSymb/s to 27.5 MSymb/s
• Jean Pierre F6DZP created software and schematic design
• Brian G4EWJ prepared PCB layout and gerber files
• BATC team sells kits on BATC Online Store

72

27

DATV-Express
MiniTiouner USB-based Receiver Project

MiniTiouner USB-based Receiver is “ham hackable”
(photo courtesy of G4KLB)

28

DATV-Express
MiniTiouner USB-based Receiver Project

TiTioune is DVB-S/DVB-S2 quality analyzer

73

DATV-Express

• DATV-Express is now released for ODROID ARM CPU’s
• There were “handcuffs” that limited interest and applications:

• Linux – steep learning curve or hams with “no interest”
• NTSC/PAL cameras were old (becoming obsolete)
• Hauppauge HW video encoders are difficult today (no linux)

• DatvExpressServerApp on Windows allows “escape handcuffs”
• New cameras (webcams, etc) can be selected for GraphStudioNext

• UDP opens many opportunities for remote video streams
• USB-based MiniTiouner RCVR project solves DATV problems
• Open project source code repository - - see URLs at end
• PLANS ? – “so many ideas, so little time”

Conclusion and Plans

DATV-Express
• British ATV Club - Digital Forum

www.BATC.org.UK/forum/
• CQ-DATV online (free monthly) e-magazine (ePub format)

www.CQ-DATV.mobi
• OCARC library of newsletter DATV articles

www.W6ZE.org/DATV/
• TAPR Digital Communications Conference proceedings (free downloads)

www.TAPR.org/pub_dcc.html
• Yahoo Group for Digital ATV

http://groups.yahoo.com/group/DigitalATV/
• DATV-Express project website

www.DATV-Express.com
• G4GUO github for DATV-Express source code

https://github.com/G4GUO/datvexpress_gui.git
• G4GUO github for express_server source code

https://github.com/G4GUO/express_server.git
• Hardkernel (Korea) for ODROID model U3 ARM-based “micro-PC”

www.hardkernel.com
• Jean Pierre F6DZP web site for TiTioune and MinTiouner

http://vivadatv.org

74

Measuring the Ionosphere at vertical incidence using Hermes,
Alex, and Munin Open HPSDR and Gnuradio.

Tom McDermott, N5EG, n5eg@tapr.org

Key words: Monostatic, Ionosphere, Doppler, Correlation, HPSDR, Gnuradio

Abstract

This paper describes a monostatic method for measuring the vertical virtual height and the vertical
velocity of the F-layer of the ionosphere. The equipment is simple and relatively low power, it uses the
Open HPSDR Hermes transceiver module, Munin broadband Power Amplifier (PA), and Alex RF filter
module. The antennas consist of a 40m dipole and antenna tuner for transmit and an active receive
loop antenna. The software real-time processing (reception, windowing, and correlation) is done using
Gnuradio on a Linux PC, followed by post-processing using a Python program (multiple sweep
integration and plotting).

Ionosphere

Figure 1 shows typical critical frequency for the E- and F layers versus local time of day. While the
MUF depends on the angle of incidence to the ionosphere, the critical frequency is defined at vertical
incidence. Generally measuring the E-layer requires using the 160m band (except occasionally near
noon during the summer at lower latitudes it may be possible to use 80m). Measuring the F2-layer
critical frequency can be done on the 80m band much of the day, and sometimes on the 40m band.
When measuring the F-layer, the higher the frequency used the less the F-layer echo attenuation
caused by transiting the E-layer twice.

0

2

4

6

8

10

12

0 3 6 9 12 15 18 21 24

Fr
eq
ue
nc
y,
M
Hz

Local Time, Hours

Typical Critical Frequency
40 N, Summer

F Fcrit

E Fcrit

Figure 1 - Typical Critical Frequencies for E- and F- layers, summertime, 40 degrees N, Solar time, Sunspot
Number = 86

75

The ionosphere reflects vertically incident signals below the critical frequency. The time-of-flight of the
go plus return signal indicates how high the ionospheric layer is. Additionally the ionosphere layer
may have a vertical velocity (either upwards or downwards) that induces Doppler shift onto the
reflected signal. Figure 2 shows the basic setup –transmit and receive antennas are located within
about 100 feet of each other – this is known as a monostatic radar configuration.

Chirp Measurement Approach

Practical measurements pose some difficult requirements because the echo is delayed less than one
millisecond (E-layer) or about 1.6 milliseconds (F-layer). The monostatic approach also means that
the transmit signal will be much stronger than the received signal, thus the receiver dynamic range
must be large.

The approach chosen for these experiments was to transmit a linear FM chirp signal and correlate the
received signal against the signal used to drive the transmitter (matched filter approach). The number
of correlation taps is large in order to provide enough dynamic range and time resolution to see echos
approximately 100 dB below the transmit signal. This approach requires full-duplex equipment –the
transmitter and receiver are operational simultaneously. If the transmitter and receiver are co-located
the transmit signal tends to overload the receiver which is listening to the same frequency at the same
time as the transmitter is operating. The current experiment uses co-located Tx/Rx (same circuit
board) and Tx/Rx antenna having about 20 meters separation. A similar experimental approach using
60 meters of Tx/Rx antenna separation was previously demonstrated by the Institute of Solar-
Terrestrial Physics1. The low-phase-noise and good ADC dynamic range performance of the Hermes
receiver helps minimize receive noise that would otherwise obscure the desired receive echo2. Chirp
modulation is discussed in some recent amateur radio literature3.

A linear FM-chirp signal is a constant-amplitude signal that sweeps in frequency at a constant rate. At
the end of the sweep the signal returns back to the start frequency and sweeps again. For example,
an up-chirp could sweep from -fd KHz (below the channel center frequency) to +fd KHz (above the

Figure 2 - Basic setup - Transmitter and Receiver Co-located.

76

channel center frequency), then ‘snap’ back to -fd kHz and start again. It’s also possible to turn off the
transmit signal for a short period of time during the retrace. The turn-on and turn-off parts of the signal
are amplitude ramped with a raised-cosine waveform in order to prevent spectral transients. A down
chirp is just the opposite, it starts at a frequency above the channel center and sweeps down at a
constant sweep rate to below the channel center frequency.

The received signal is correlated against a stored version of the transmit signal. In effect the DSP
correlation filter is performing as a matched filter of the chirp signal. When using a chirp to measure
the ionosphere we are interested in searching for a weak replica of the chirp delayed by some amount
of time related to the propagation delay, equipment delay, and frequency shifted due to the Doppler
shift induced by the vertical movement of the ionosphere. Doppler shift of the received echo has the
effect of appearing to alter the time delay (and thus the virtual height measurement) of the received
signal. The effect of Doppler is equal and opposite for an up-chirp signal compared to a down-chirp
signal. By transmitting both kinds of chirps, and analyzing them independently, we can compensate
for the Doppler-induced range (height) error and additionally, measure the amount of Doppler shift
induced thus allowing computation of the vertical velocity of the ionosphere. Figure 3 shows reception
of an Up-chirped signal with no Doppler shift. Figure 4 shows reception of an Up-chirped signal with
(+) Doppler shift, and Figure 5 shows reception of a Down-chirped signal with (+) Doppler shift.

Figure 3 – Up Chirp reception with no Doppler shift.

Notice that the Up-Chirp and Down-chirp exhibit opposite range errors. This allows us to resolve the
correct range and the amount of Doppler shift. The amount of range error caused by Doppler shift is
dependent on the chirp rate.

The range to the ionosphere (the height) is proportional to half of the round-trip time.

 (1)

Where c is the speed of light in m/s, and t is the time of the echo, in seconds. To compute the range
error caused by Doppler, the formula is:

time

fre
qu

en
cy Time delay due to

ionsopheric height,
no Doppler shift.
The Range or
Height of the layer.

77

 (2)

Where d is the Doppler shift in Hz, and s is the chirp sweep rate in Hz / second.

For example a chirp rate of 15,000 Hertz/second implies an equivalent range error of 19.919 km per
Hertz of Doppler shift. The vertical velocity of the ionosphere is measured by the induced Doppler shift
which we infer from the range error.

 (3)

time

fre
qu

en
cy

(+) Doppler shift due
to falling ionospheric
layer (approaching
earth).

Causes Range
error due to (+)
Doppler shift

time

fre
qu

en
cy

(+) Doppler shift due
to falling ionospheric
layer (approaching
earth)

Causes Range
error due to (+)
Doppler shift

Figure 4 - Up Chirp Reception with Positive Doppler Shift due to falling ionospheric layer.

Figure 5 - Down Chirp Reception with Positive Doppler Shift due to falling ionospheric layer.

78

Note that the vertical movement of the layer induces a doubled Doppler shift. The chirp signal hits a
moving ionosphere layer, thus being Doppler shifted as received by the ionospheric layer. Then the
signal is re-emitted by the ionosphere and received back at the ground thus inducing another Doppler
shift. Doppler shift is related to the layer velocity and the frequency of the radio wave, adding the
factor of two for reflection from a moving ionosphere.

 (4)

We compute the velocity of the ionosphere as:

 (5)

Relating the velocity to the measured range error:

 (6)

We measure the range error by measuring the difference between the ranges determined by the up-
chirp and the down-chirp time measurements. Since each chirp introduces an equal and opposite
error, the actual range error is the difference divided by two.

 (7)

A slower chirp rate yields higher sensitivity to Doppler shift allowing more resolution of the ionosphere
Doppler and thus the ionosphere vertical velocity.

Signal Processing

The basic receive algorithm consists of cross-correlating the received signal against a stored replica
copy of the transmit signal. This is known as a matched filter. It provides a couple of benefits:

 The actual transmit signal strongly correlates with its own replica providing a convenient way
to compensate for fixed equipment delays.

 A weak echo is easily seen above the background noise even in the presence of a strong
transmit signal.

 The delay of the echo signal is the difference in time between the received transmit peak and
the received echo peak.

This removes the requirement of knowing the absolute delay through the radio, Ethernet switch, and
DSP processing – such errors or unknowns are subtracted out.

The DSP algorithm that correlates the received signal with the replica is factored through several
steps in order to improve the computational efficiency. We define the two signals, f(t) (transmit replica
copy) and g(t) (received signal). The circle-plus means convolution, and the circle-cross means
correlation. The convolution of f(t) with g(t) is defined as:

79

(8)

Convolution is implemented in DSP using an FIR filter kernel. A ready-made DSP block exists within
Gnuradio that directly implements an FIR filter. Correlation is closely related to convolution, the filter
taps need only be time-reversed to implement cross-correlation. The cross-correlation of f(t) with g(t)
is defined as:

(9)

We need only time-reverse the stored replica copy of the transmit chirp signal before introducing it as
the taps of the FIR filter. It’s less efficient to time-reverse the receive signal because it would require
buffering the received signal first. We don’t need to write any code, we can simply use Gnuradio’s
existing FIR filter and just read in the taps from a file containing the previously stored time-reversed
chirp signal.

It is not possibly to actually compute an infinite number of taps, but some finite number of taps.
Unfortunately an FIR filter requires on the order of N2 operations, abbreviated O(N2). This means that
if we try to implement a correlation of 1 million taps (106), the correlation operation requires on the
order of one trillion (1012) computation cycles which is infeasible. Both the signal and the taps are
complex numbers (I and Q), requiring at least four floating-point multiplies and two additions per tap.

Fortunately there is a much more efficient way to implement the FIR filter in the frequency domain
using the FFT (Fast Fourier Transform). This is called an FFT filter and it is also a built in block in
Gnuradio, so we don’t need to write it. The correlation can be implemented by taking the FFT of f(-t)
and the FFT of g(t) and then pair-wise multiplying each element of f and g. Finally we take the inverse
FFT of the result to get back to the time domain. This sounds more complicated than a direct FIR, but
the FFT operation is extremely efficient such that the FFT filter requires far fewer computations, on
the order of O(N log2 N) operations. For a 1-million element correlation, this is on the order of 18
million operations (2 FFT and 1 IFFT) compared to one trillion operations using the direct FIR filter.

For convolution,

 (10)

Similarly to an FIR filter used for correlation, the FFT filter can be used for correlation by time-
reversing the waveform used for the filter taps.

 (11)

Properly constructed linear chirp signals have several interesting symmetry properties: an up-chirp
signal is the frequency conjugate of the down-chirp signal. An up chirp signal is also the time reverse
of a down chirp signal and vice versa. This means we don’t even need to bother time-reversing the
stored chirp signal. To correlate a receive echo, we just need to load the FFT filter taps (or FIR filter
taps) with the opposite type of stored transmit chirp.

 (12)

80

This series of steps (leading to Equation 12) reduces the computational effort required to correlate the
received signal against the stored transmit signal by an extremely large amount. At 384 k samples per
second, a Core i7-3770 (3.4 GHz) processor can easily keep up with the 1-million point correlation in
real time in Gnuradio. In fact, several can be run in parallel to directly compare various algorithm
tradeoffs.

Figure 6 is a block diagram of the DSP steps implemented in the flowgraph. The FFT taps utilize a
stored version of the chirp waveform created at 384 ksps, so no decimation is performed in the
receive chain of the active flowgraph. There are very few steps required. The time domain output of
the correlation filter is stored as a file on disk (File Sink) for later post processing in Python (receive
integration).

Receive Lowpass Shaping Filter (Windowing in the Time domain)

In the previous figure the signal received from Hermes is first lowpass filtered in the frequency domain
before being applied to the correlation function. This lowpass filter has a gentle shape defined with a
Blackman-Harris window. The shaping in the frequency domain results in the time-domain samples in
the correlation filter being windowed as though by a time-domain window because a linear chirp is
being received (the frequencies at the extreme positive and negative ends of the chirp are the most
attenuated). Without this windowing, spectral leakage would obscure the echos. Figure 7 shows the
correlator output sidelobes with and without receive lowpass filtering. The time delay of the Blackman-
Harris filtered and the unfiltered signals been approximately normalized with a delay element to
roughly time-align the two to ease visual comparison in Figure 7.

Receive Integration

While the raw algorithm achieves about 110-120 dB of dynamic range, overloading of the receive
antenna amplifier and other parts of the receiver degrades the dynamic range to about 90 dB. In order
to bring the received signal up out of the noise, about 10 sweeps of the receive signal are recorded on
disk. Then the signals are non-coherently averaged. This brings the F-layer echos clearly up out of
the noise level.

Figure 6 is the Gnuradio flowgraph used to capture and real-time process the signal. A custom
Gnuradio block was written to generate a programmable chirp signal. A number of parameters were
included in that block to permit adjusting the frequency deviation, sweep rate, number of samples per
sweep, and providing a raised-cosine start and stop shape. The Chirp block feeds the Hermes
transmitter port. The HermesNB module was written to provide access to many features of Hermes
and Alex, and has been previously described4.

The Hermes FPGA code also filters the transmit signal, it limits the maximum frequency response of
the transmitter to ±20 KHz of the transmit center frequency.

The reason that the echos are non-coherently integrated is that the Doppler shift induced onto the
receive signal means that the relative phase of the receive echo changes each sweep of the chirp. If
coherently integrated the echos would average towards zero. Non-coherently we just integrate the
magnitude of each echo (neglecting phase). A 3 dB improvement in SNR should be possible through
echo phase de-rotation and coherent integration.

81

Figure 6 - Block diagram of the Gnuradio chirp transmit & receive data processing flowgraph.

Figure 7 - Rectangular (no low pass filter) has high residual correlation sidelobes. A Blackman-Harris lowpass
filter reduces the sidelobes out past about 0.3 milliseconds. The vertical scale is -50 to +120 dB.

82

Block Diagram

Figure 8 is a block diagram of the test setup. The Alex module is used as the transmit bandpass filter,
however it is not used in the receiver path due to insufficient isolation between the transmitter and the
separate receive connector on the Alex module. Input to the Hermes receiver had to completely
bypass the Alex module. Gnuradio sends a FM chirp signal of constant amplitude to the transmit
section of Hermes, and then to Munin (broadband PA) where it is amplified to about 20 watts output
power. The amplifier output is filtered by the Alex RF filters, and sent to an antenna tuner and
ladderline and a 40m dipole. For F-layer echos, the transmit signal is about 3.6 MHz.

Figure 8 - Block Diagram of Test Setup. Box colors indicate functions implemented in Hardware, Gnuradio
software, and Python software.

Due to the high SWR on the ladderline, about 6 watts of transmit power is actually radiated by the
antenna, while 14 watts is absorbed by the feedline loss. On receive a homebrew active loop antenna
1 meter in diameter feeds a differential amplifier and balanced-to-differential transformer through a
common mode choke. The antenna is remotely powered over the RG-6 feedline. After reception the
Hermes signal is filtered in Gnuradio through a baseband lowpass shaping filter (to window the
samples in time) before being sent to the FFT correlator.

Figure 9 is a photograph of some of the components of the experimental setup, while the RF Alex
bandpass filters and the Core i7 Linux computer running Gnuradio are not shown in the photograph.

Figure 10 is a photograph of the active receive loop antenna. Only one of the two loops are used in
this experiment. The loop antenna is vertically polarized, helping to reduce coupling to the horizontally
polarized transmit antenna. The antenna was constructed with future experiments in mind where it

83

should be possible to discriminate between the Ordinary-ray (O) and eXtraordinary-ray (X) reflected
by the ionosphere.

Figure 10 - Homebrew dual active-loop receive antenna (vertically
polarized). Only one of the two loops is used in this experiment.

Figure 9 - Photograph of the test setup, showing DC Power Supply, Munin amplifier, Active loop
bias-T, Hermes board. Not shown: Alex RF bandpass filter, Computer (outside the photo).

84

Results

So far measurements have been made on the F-layer at several times of day. The tests were
conducted at about 3.6 MHz channel center frequency. Before dawn in fall / winter this is above the
critical frequency, and no vertical reflections were received. In the evening local time the critical
frequency is usually higher than 3.6 MHz, and vertical reflections have been received.

Figure 11 is a graph of the up-chirp (blue) and down-chirp (green) signals. It will be noticed that the
Up- and Down- chirps exhibit range difference due to the Doppler shift of the moving ionospheric F-
layer. This figure represents about ten sweeps that have been non-coherently integrated. The vertical
axis is the magnitude of the correlation, in dB while the horizontal axis is time in seconds (spanning 0
to 5 milliseconds). The transmit peak has been adjusted to zero time by the post-processing Python
integration program. The primary reflections are seen at about 1.7 milliseconds after the transmit
peak. There is a spurious peak at 4 milliseconds (and multiples of 4 milliseconds) for both sweeps, the
cause has not yet been determined.

At about 3.4 milliseconds, small peaks in the Up- and Down-chirps can be seen. These are double-
transit reflections – the signals traveled up to the ionosphere, down to ground, reflected by the ground
back up to the ionosphere, and reflected back downward a second time. Notice that the Doppler
range error is doubled as well.

The Doppler induced range errors indicate that the F-layer of the ionosphere is ascending at the time
of this measurement.

Figure 11 - F-layer reflection at 3.6 MHz in the evening local time. This figure is the correlation integral
output after post-processing and integrating about 10 sweeps with Python software. The vertical axis is

dB, the horizontal axis is delay time in seconds. The signals near 1.7 milliseconds are the F-layer
reflections. Signals near 3.4 milliseconds are double-transit reflections. The signals at 4.0 milliseconds are

system artifacts.

85

The average of the two time measurements is the actual F-layer height, while the difference between
the two is proportional to 4 times the Doppler shift. The moving ionosphere reflects the signal, thus
doubling the induced Doppler shift, and the up and down chirps have opposite range errors induced.
Thus the measured range difference represents quadruple the Doppler shift.

Calculations from Fig 11 show the F-layer height at 254 km, and the layer velocity at +15.4 meters per
second (upward). The Doppler shift is about -0.38 Hertz. Both range and Doppler resolution is limited
by the filters and the correlation width. The half-lobe width is about ±17 microseconds, implying a
range bin size of roughly 5 km.

Further Work

Figure 12 shows F-layer reflections that include reception of both the Ordinary (O) wave and the
Extraordinary (X) waves. With a single receiver and linearly polarized receive antenna it is not
possible to know which is O and which is X. The current single linearly polarized receive antenna
sums the Right Hand Circular (RHC) and Left Hand Circular (LHC) components into one received
signal. The dual-receive crossed linear loops (previously shown) plus two phase-coherent receivers
(not available to the author at this time) could be used to capture two signals, one per antenna. Then
the Gnuradio DSP software would be able to synthesize the right-hand and left-hand circular signals
from the two linearly polarized receive signal components.

Figure 12 - F-layer reflection at 3.6 MHz showing Ordinary (O-wave) and Extraordinary (X-wave) reflection

components from the F-layer near 1.7 milliseconds. The signals at 3.06 and 4 milliseconds are spurious
artifacts.

Circularly polarized signals identify which reflection is O and which is X. Since the transmit antenna is
linearly polarized, it emits a RHC plus a LHC signal simultaneously. These two signals remain
coupled as one linearly polarized signal until encountering the ionosphere undergoing magnetic bias
from the Earth’s magnetic field. This causes them to de- couple into independent LHC and RHC
components, which are the O and X waves. The effective ionospheric refractive index is different for
the RHC and LHC components, which thus propagate with different characteristics in the ionosphere
and are received as two different reflections.

86

We can construct the RHC and LHC components from the two received signals. Designating these
two received signals as RXa and RXb (each complex valued) then:

 (13)

 (14)

LHC and RHC can be generated at baseband using standard Gnuradio complex multiply blocks.

E-layer reflections have not been received at this time due to lack of appropriate transmit antenna.

Thanks to Andrew Martin, VK3OE, John Petrich, W7FU, and Phil Harman, VK6PH for helpful review
and comments.

1 “Vertical ionosphere sounding using continuous signals with linear frequency modulation” A.V.
Podlesny, V.I. Kurkin, A.V. Medvedev, K.G. Ratovsky, Institute of Solar Terrestrial Physics, Irkutsk,
Russia, Conference General Assembly and Scientific Symposium 2011, Istanbul, IEEE 2011. INSPEC
Accession Number: 12354018

2 Phil Harman, VK6APH. 2010. “Software defined radio: The Hermes state of the art single board SDR
transceiver”. RadCom 86(05):28-29.

3 Phil Harman, VK6APH. 2012. “Chirp Modulation: A sophisticated radar-like technique for propagation
study that makes 100W act like 100 megawatts” RadComm 2012(3):32-38

4 “Gnuradio Companion module for openHPSDR Hermes / Metis SDR Radio”, Tom McDermott,
N5EG, Proceedings of the 32nd ARRL and TAPR Digital Communications Conference (2013), pp 36-
42.

87

88

89

90

91

92

93

94

95

96

97

98

ARDOP (Amateur Radio Digital Open Protocol)
A next generation digital protocol for HF and VHF/UHF

Rick Muething KN6KB Matthew Pitts N8OHU John Wiseman GM8BPQ

Abstract:

The popularity of low cost PCs and tablets with substantial DSP processing power and an increasing
awareness of digital signal processing in the amateur community have created an explosion of digital
modes. Some of the challenges this poses are lack of portability, inconsistent “virtual TNC” interfaces
and protocols optimized for single uses. ARDOP is a new protocol development which was targeted to
address these challenges. The development started in 2014 and Alpha testing of the ARDOP_Win
TNC (Windows version) was begun in April 2015. From the beginning the protocol was designed to
cover a wide spectrum of amateur uses and be fully documented with open sourced code to encourage
learning, experimentation, evolution and portability to other platforms both software and hardware.
Key words: ARQ, FEC, 4FSK, 8FSK, 16FSK, 4PSK, 8PSK, WINMOR, cyclic prefix, bandwidth
negotiation, automatic timing, open source and sound card protocols.

Introduction:

Today’s computing platforms (PCs, laptops, tablets and smart phones) pack more numeric processing
capability than expensive dedicated DSP hardware of just 10 years ago. This with simple low cost
sound cards/interfaces and modern radios with built in “sound cards” combine to make the setup and
experimentation of software generated digital modes an important part of our amateur radio hobby.
These modes range from simple keyboard and weak signal modes such as PSK31 and JT65 to more
complex high speed message/file modes with the ability to automatically adapt to changing signal
strength and propagation conditions. WINMOR [1] developed by one of the authors in 2008 has seen
good acceptance as a low-cost Pactor alternative in various messaging systems like Winlink 2000 and
BPQ32. Each generation of protocol and increase in low cost DSP equipment provides an opportunity
to expand both the performance and flexibility of software controlled digital modes. But the
development, optimization and support of a full featured digital protocol require a substantial
contribution of time and skills that should be spread over many applications, operating systems and
years of use. The development of ARDOP started with a short list of target objectives:

 Open Design promoting targeting to various computer, OS, and hardware platforms
 Wide range of bandwidths to optimize spectrum usage
 Automatic channel adaptability…ability to adjust to changing propagation and S:N
 Support for both connected ARQ (Automatic Retry reQuest) and multicast FEC (Forward

Error Correcting) transmission modes.
 Minimize interference potential (bandwidth negotiation and effective busy channel

detection)

99

 Flexible operating modes and radios. Compatibility with popular voice grade HF and
VHF/UHF transceivers using modulation optimized for the frequency of use.

 Full binary transmission and support for multi-language UTF-8 character sets.

These expanded over a period of months to first a skeleton specification and finally a full detailed
specification with detailed spread sheets showing the composition, bandwidth, robustness and speed of
several modes across a 200 to 2000 Hz (audio bandwidth) spectrum [2]. In deriving the specification
care was taken to provide avenues to encourage experimentation yet not impact the compatibility of
compliant implementations.

Virtual TNC with Host concept

The experience with hardware TNCs and the portability of virtual (software) TNCs such as WINMOR
has confirmed the benefit and flexibility of separating the “TNC” or modem function from the host
(user) application. This promotes portability and allows the same TNC code or hardware
implementation to be used (without change) in a variety of diverse applications such as keyboard
clients, messaging systems, tracking functions, sounding systems, emergency beacons, etc. We chose
this path to allow us to focus first on the protocol and TNC and not the final user host application. To
the user the virtual ARDOP TNC operates similar to a hardware TNC and like a hardware TNC can
display operating parameters or hidden away to avoid clutter. Figure 1 is an example of the ARDOP
Win TNC showing a small but rich panel to display operating parameters, transmission progress and
for the entertainment of the operator!

Fig 1. Screen capture of the ARDOP_Win TNC user interface/display

The virtual TNC can interface to the host program via a TCPIP connection (wired or wireless), a high
speed serial connection or a wireless Bluetooth connection. This permits not only flexibility but the
ability to operate the TNC/Radio combination remotely from the host software. Likewise a hardware
implementation of the protocol (e.g. PIC microprocessor with sound card chip) could interface to the
same host software and provide functional equivalence and compatibility. A simplified block Diagram
of the ARDOP TNC is shown in Figure 2.

100

Fig 2. ARDOP TNC Simplified Block Diagram

ARDOP Performance

Most amateurs familiar with digital modes are aware of the tradeoffs required when it comes to
robustness, bandwidth, signal strength and propagation quality. Some specialized modes can work
deep into the negative S:N regions but they are very slow…sometimes exchanging only call signs.
High speed modes permit sending large files and images but need fairly good signals, wider
bandwidths and minimal multipath propagation or path compensation. Even within a 10 minute QSO
or forwarding session wide variations in signal strength and propagation quality are often observed.
One solution to this problem is for the sending station to adjust modulation type and bandwidth based
on the current propagation channel. ARDOP uses a simple but effective mechanism to send the
received decode quality (basically a “score” of the last received frame’s symbol constellation) back to
the sending station with every ACK or NAK. During the development of ARDOP a HF channel
simulator was often employed to develop the modes, mechanisms and optimum FEC level to allow the
sending station to rapidly home in and maintain near optimum modulation (and bandwidth in some
cases). This allows the session to proceed with the highest data rate that can be supported with the
current S:N, propagation channel and bandwidth. Figure 3 shows two typical net throughput
measurements (200 Hz channel and 2 kHz channel) made during Alpha testing using long ARQ
sessions on an HF channel simulator across various HF channel types.

101

Fig 3. ARDOP performance over WGN (white Gaussian noise), MPP(multi-path poor)
and MPG (multi-path good) channel types for 200 and 2000 Hz bandwidths.

Future plans include experimenting with “training sequences” and DSP path compensation techniques
to allow higher performance during poor channel conditions.

Porting ARDOP to Other languages, OS and Platforms

Three significant challenges for this project from a programming perspective are as follows:
1) Porting the code from the initial rapid prototyping language used (Visual Basic .NET) to another
language more readily usable on the various target platforms.
2) Targeting multiple platforms, such as Linux, Mac OS X, iOS and Android.
3) Finding alternatives to specialized interfaces (sound card, Internet and I/O) that were used for
development of previous generations of applications by the same developers.
An interesting thing happens when you start looking into the various options and taking a hard look at
the source code. For this project, conversion of the VB.NET code to C# was chosen, as a few of the
source files were actually very similar to the original C/C++ code that can be found on the Internet
from hams that developed software a decade or two ago. And while conversion to an alternate
language may appear difficult the Internet is a good source of free tools to do rough conversions. The
online code converter from Telerik [3] is the one chosen by one of the designers of ARDOP for this
purpose. When the code is converted by the online tool, it is quite likely that it's not going to be ready
to compile; the designer had to do a great deal of hand editing of the results to get it to compile and
that is compounded by the number of files that interact in subtle ways. It also uncovers a lot of corner
cases where VB.NET specific functionality has to be removed for a more workable product. This also
provides an opportunity to lay the ground work for the second and third challenges; targeting multiple
platforms and alternative interfaces.

When targeting multiple platforms, it is often best to understand the way each one handles user
specific files such as application configuration files. It is also good to know what options exist for
handling the interface to the sound hardware in the device the application will be running on. In the
past, and this is often still done by application authors, configuration files have been placed in the same
directory as the application executable is. This is fine in a single user environment, but not when
installed on a multiuser system. The proper procedure is to place the configuration files in a folder

102

(also called a subdirectory) in the user's home directory. Global files with basic parameter values can
be installed as well, if desired. Audio device detection can be handled one of two ways; with a custom
library that is used by the software on the alternative platforms instead of the default library, or one
that is available on all target platforms.

Typical Host programs

For initial on-air testing of the ARDOP protocol we needed a fairly simple host program where users
could send beacons, basic keyboard text, and small files with ARDOPs FEC and ARQ modes
exercising various bandwidths and modulation modes. Existing code from a prior project (V4Chat)
was modified to interface to the virtual
ARDOP TNC using a robust TCP IP
interface. Fig 5 shows the basic ARDOP
Chat host that provided setup for the
ARDOP TNC, keyboard interaction,
received data display and file editing and
transmission along with a few
conveniences like ADIF logging, beacon
setup, and basic radio control (PTT and
Frequency).

 Fig 5. Basic ARDOP Chat host program used for initial keyboard testing.

Following initial debugging of the ARDOP Virtual TNC and ARDOP_Chat host programs John
Wiseman GM8BPQ adapted his BPQ32 [4] host program to interface to the ARDOP Win TNC. This
allowed additional functions including radio email and binary file transmission through the WL2K
system using the existing B2 forwarding protocol. The following diagram shows how the BPQ Host
interfaces to the ARDOP TNC along with conventional Packet and Pactor hardware TNCs.

This interface approach (separating the TNC DSP code from the host and interfacing through standard
TCPIP , Serial or Bluetooth interfaces) allows the TNC code to be host application independent similar
to the way a typical hardware TNC is.

103

Fig 6. ARDOP Virtual TNC Interface to the BPQ32 System

Figure 7 shows a basic screen capture of an ARDOP B2F protocol session with the BPQ32 ARDOP
TNC interfaced as described in Fig 6 above.

Fig 7. BPQ32 ARDOP ARQ session showing the interface to

the WL2K Ham radio email system.

104

Project Status

The ARDOP project began Beta testing using both the ARDOP_Chat and BPQ 32 host programs in
July 2015. The ARDOP Protocol spec is complete and the ARDOP virtual TNC is operational on both
the Windows (Win XP- Win 10 using DirectX) and Linux (x86-Debian and ARM-Raspbian systems
using MONO and the ALSA sound library) platforms and on Apple using the popular dual boot
systems. A wide range of data modes covering speed and robustness ranges in excess of 40:1 are
optimized for both HF (baud rate < 200 baud) and VHF/UHF FM (baud rate > 600 baud) are
operational. As the Beta phase completes we will release the open source code along with a detailed
testing and conformance document to allow those adapting or extending the protocol to insure basic
compatibility with prior implementations. We have also initiated an effort to develop small low-cost
hardware to allow wireless interfacing (Wi-Fi and Bluetooth) of small computing platforms (tablets,
smart phones) to HF and VHF/UHF radios that would use the ARDOP protocol.

Credits

The authors wish to thank all those ARDOP Alpha and Beta testers from across the globe that have
contributed to the development and testing of this new amateur protocol. Acknowledgement is also
given to those programmers that wrote public DSP and encoding/decoding routines that were used in
the ARDOP TNC. Specific reference of these is included in the commented source code.

References:

[1] (WINMOR…A Sound Card ARQ Mode for Winlink HF Digital Messaging, Rick Muething,
KN6KB, 27th ARRL and TAPR Digital Communications Conference 2008)

[2] ARDOP Documentation and Code in Yahoo groups:
https://groups.yahoo.com/neo/groups/ardop_development/files
https://groups.yahoo.com/neo/groups/ardop_users/files

[3] Telerik on-line code converter. http://converter.telerik.com

[4] BPQ Host program by John Wiseman GM8BPQ. http://g8bpq.org.uk
https://groups.yahoo.com/neo/groups/BPQ32/info

105

An OS Independent and Device-Independent Mobile Web Front
Panel for Radio Transceivers

Bruce Perens, Algoram
bruce@perens.com

Introduction
Algoram has produced a radio front
panel that runs on almost all popular
computer platforms, with only iOS
as the exception at this time. This
program is not ported from one
system to another, the exact same
code runs on every platform. It runs
well on smartphones. The radio
includes a WiFi access point and
uses this means to communicate
with the smartphone. Bluetooth can
also be used.

The computing resources required in
the radio to support this system are
very modest and run in inexpensive
microprocessors without virtual
memory support. The smartphone interface includes a waterfall bandscope and can support all manner
of graphical displays and controls. The smartphone user interface doesn't require much dexterity and
can be easily used by most people. Tablets of various sizes are also supported and provide additional
display area and ease-of-use.

This front panel is part of Algoram Katena, a 50-1000 MHz software-defined HT which can be
programmed to communicate using many different modulations, modes, and protocols. We've
previously refered to Katena as “Whitebox” or “HT of the Future.”

Katena is a front-panel-less HT which remains in the user's pocket or on a belt, and is controlled with a
smartphone, with the smartphone providing the audio input and output as well as all front-panel
functions. Currently this exists as a prototype larger than an HT, which will be made available in base
and mobile form factors first, and then will be further miniaturized to become a handheld device.

The key to this technology has been the use of emerging HTML5 APIs to run our software in the
device's web browser. There have been previous efforts that provided receiver interfaces, with
bandscopes, using some form of HTML or perhaps Java. Recently, browsers have gained standardized
APIs for two-way audio and video communications, and thus they make the microphone and camera
available to the program. They were already capable of providing all manner of 2-D displays, audio
output, and controls needed to operate a radio.

Illustration 1: A test of Algoram's waterfall bandscope using random data.
Image is copyrighted by the author and released under the same terms as this paper.

106

Revenge of the Clones
Computing hardware and operating systems are fragmentary, they aren't all the
same and they don't all run the same code, and this is in general a benefit to
society. Imagine if Operating Systems were like the
“clone army” in Star Wars episodes II and III. Just
as clone troopers would all be “identical-twin
brothers” who share the same DNA, Operating
Systems could all look the same and run the same
code. Wouldn't that be great?

No. When one clone trooper got sick, they'd
probably all get sick. And here's a real-world
example: because Tasmanian Devils became so
inbred that they are “clones” from an
immunological perspective, they have developed
a contagious cancer that is driving them to
extinction. Cancer isn't contagious in people
because we aren't clones and we each have
different immune systems.

Similarly, different software doesn't fall victim
to the same viruses and security bugs at the
same time, and thus a network of hetrogenous

systems (ones different from each other) is more likely to have some
portion continue to operate during an attack, while a network of
homogenous systems (all the same) is likely to have all of its nodes
fail.

Fifteen years ago, when the Microsoft Windows systems at the
largest global express delivery company were attacked by the Red
Flag virus, their entire global computer network went out of service
and their hundreds of thousands of employees had to operate on
phones and fax machines for a day, until of the Windows systems
could be brought down and disinfected. Only a few systems running
the BSD operating system maintained the company's web presence.

So, What Does This Have To Do With Ham Radio?
Hams operate the emergency services communication network of last resort. We are building more
computers into our systems because that's the way that technology is heading, and we are creating
digital networks that allow our computers to exchange data over the air, and thus make it possible for
them to exchange viruses and manifest security bugs over the air. Thus, in order for our systems to be
effective during emergencies, they must not all run the same software.

Illustration 3: A Tasmanian Devil
afflicted with contagious cancer.
Image by Menna Jones from a PLoS paper
under a Creative Commons Attribution
license, see https://commons.wikimedia.org
wiki/File:Tasmanian_Devil_Facial_Tumour
_Disease.png for details.

Illustration 2: A
cosplayer acting as the
Star Wars clone Jango
Fett.
This image was created by Sam
Howzit and is under Creative
Commons Attribution 2.0
license. The name and image of
Jango Fett are trademarked by
Disney and their use here is
intended to fall under the Fair
Use doctrine. Downloaded
from https://commons.
wikimedia.org/wiki/File:Jango
_Fett.jpg

Illustration 4: "The Scream" by Edward
Munch, has frequently been used to
illustrate frustration with computer
failures, although Munch did not live in
the Computer Age. Copyright expired.

107

The Heartbreak of Hetrogeny
So, we've established that having hetrogenous systems, which don't all run the same code, are
important for the security and continued operations of the world's computer networks, and are even
more important to the radio amateurs who operate the network of last resort. But there is also a great
cost to hetrogenous systems. Because they will not, in general, run the same code, we will often have
to build separate programs to perform the same task on each different flavor of system.

Thus, a native application for an operating system, one which directly uses the CPU and its instruction
set, the GUI, and the operating system services for that system, will be different from a native program
on another OS or even a different hardware device. Native programs for Microsoft Windows and
MacOS will in general look very different at the source-code level, and programs that look the same at
the source code level will have to be recompiled for differing instruction sets, for example those on the
the Intel CPUs common to desktops and the ARM CPUs common to smartphones.

So, we end up with a vast combinatorial problem. Even a company that can employ many
programmers will find it difficult to economically support all of the available hardware and operating
system combinations.

Software engineers have tried to solve this problem by making programs more portable, which means
giving them the capability to be used on more than one kind of system. There have been many different
approaches to solve this problem:

 We have Apple and Microsoft, who each would really prefer that everyone in the world run
their systems so that there'd only be one kind of OS to program for and portability would not be
an issue. But this brings us back to the “clone army” problem.

 We have portability layers like wxWidgets and Qt, which attempt to hide differences between
systems at the source-code level, at the cost of an increase in program size and resource use,
and the failure to include all native GUI and operating system facilities in its API.

 We have Java, which tries to hide the CPU, operating system, and GUI and run the same
programs everywhere. This hasn't worked out as well as the Java designers would have liked,
for example there is a different GUI on Android smartphones and desktops, even though both
run Java, and because of differences in Java implementations “run everywhere” tends to have
also meant “test every possible system”. Solving the performance issues of Java has taken the
development of just-in-time-compilers, which turn Java into native code. These are large and
consume their own resources.

 We have software-as-a-service, which runs the program on a server somewhere on the web, and
provides it to the user via a web browser interface. This has the benefit of removing the need
for users to administer servers and the programs that run on them, but it has tended to fail in a
disaster, as the server is in general far away and must be accessed via a high-speed Internet
connection. In a disaster, Internet access is likely to be interrupted.

Software-as-a-service can also have the effect of transmitting a service interruption far beyond the
physical boundaries of a natural disaster. Hurricane Sandy took many data centers down, effecting
software-as-a-service customers worldwide because not every service provider had, or could afford,
fail-over mechanisms outside of the disaster area, which spanned several U.S. States.

108

 We have computer languages, many different kinds, which in general hide the differences
between CPU instruction sets but not operating systems or GUIs. For example, the C language
is available on very many different CPUs, and once you have a C compiler, you can use it to
build the facilities of many other languages, for example Python and Java.

A New Hope
The web started out as a very simple way of displaying pages with links to other pages, but it didn't
stay that way for long. The needs of providing additional interactivity, mostly to support software-as-a-
service, inspired the implementation of Javascript (a different thing from Java) and the addition of
many new APIs, and this continues to the present day.

On the one hand, this means that web
programming is architecturally messier,
and more difficult, than if the whole
thing had been designed at the same
time. Web programming now requires
the use of at least three separate
computing languages, HTML,
JavaScript, and CSS, for the portion of a
program that runs in a web browser,
often a fourth language is used to
implement the server-side software, and
there can be even more languages
involved, for example SVG which is
used to define resolution-independent
vector images, and MathML to format
mathematical equations. There are also
dozens of APIs to learn, as shown in the
illustration. To handle all of these
facilities, web browsers have gotten
huge, and use substantial resources.

On the other hand, the web browsers that closely track the HTML5 standards process, Google's
Chrome, the Mozilla Foundation's Firefox, and Opera Software's eponymous browser, are now capable
of all operations that we would want from a radio control panel. Most importantly, they handle two-
way audio and video, 2-D graphics sufficient for radio controls and displays, and efficient network
communications. These three browsers run on very many systems, and all three will run the same
program. Each browser is itself built from a different code base, although some code is common to two
of the three. So, there is some protection from bugs effecting all three browsers, although bugs in the
user's program could be exploited on all three platforms.

The Party Pooper
Chrome, Firefox, and Opera aren't the only popular web browsers. There is Safari, which is available

Illustration 5: HTML5 and related APIs. This image was created by Sergey
Mavrody and is under the Creative Commons Attribution Share-Alike 3.0 Unported license.
See https://en.wikipedia.org/wiki/HTML5#/media/File:HTML5_APIs_and_related_
technologies_taxonomy_and_status.svg

109

in different versions on Mac OS X and iOS. Despite Apple's greater expense relative to other products
and a corps of users who are perhaps fanatically dedicated to Apple and its products, Apple hasn't kept
up and isn't capable of running all of the audio APIs necessary for a radio front panel without the
creation of an iOS-specific application to support those facilities. To make the situation worse, Apple
has a policy of handicapping competing browsers which it accepts for its App Store by insisting that
they run Apple's own web rendering software rather than the browser developer's usual software. This
means that Chrome on iOS is just as crippled by Apple's failure to keep up as Safari on iOS. This
unfortunate policy doesn't exist for Mac OS X: Chrome, Firefox, and Opera are fully functional on that
platform.

At this writing, it is not known at present if Apple will provide the necessary APIs on its upcoming iOS
9. It is expected that Apple will eventually provide them, but this could be years in the future.

Microsoft's Internet Explorer tends to have inconsistent or behind-the-times implementation of new
web standards, however Chrome, Opera, and Firefox all run well on Microsoft platforms.

So, What Platforms Can We Support With HTML5 Front Panels?
At present, our HTML5 radio front panel can run on these platforms. The exact same code base runs
on all of them:

 Microsoft Windows systems running Chrome, Firefox, or Opera.
 Mac OS X systems running Chrome, Firefox, or Opera.
 Android smartphones and tablets running Chrome, Firefox, or Opera.
 Linux systems running Chrome, Firefox, or Opera. This includes essentially all Linux

distributions, for example Ubuntu, Red Hat, Debian, and Centos, but does not include ucLinux,
which does not provide virtual memory. However, our server-side software runs on ucLinux.

 Chromebooks and ChromeOS.
 Kindle Fire HD 7, but only when you install Chrome using the sideload process rather than

Amazon's app store.

These probably work too, or can be made to work, because they support the necessary browsers. But
we've not tested them:

 Other Kindle tablets with non-e-paper displays and current OS software and the Fire phone, but
only when you install Chrome, Firefox, or Opera using the sideload process rather than
Amazon's app store.

 The BSD operating system running Chrome, Firefox, or Opera
 Firefox OS and the Firefox phone.
 Ubuntu's phone platform.

110

What Doesn't Work, Then?
This leaves us with iOS as the only hold-out among popular computing platforms!

And of course we could write an app for iOS, but that would be pandering to Apple's bad policies.
We'll wait for them to catch up with web APIs.

Can We Support Even More?
Set-top boxes and TV dongles, and the various runners-up in the smartphone and tablet market: for
example Microsoft's phone platform, Symbian, Blackberry, and WebOS might support, or might be
persuaded to run, a browser with the required APIs. Android APIs are supported by some set-top boxes
and TV dongles, and Android programs that are not directly available in the device's app store can
often be sideloaded onto the device. We did sideload Chrome onto the Kindle Fire. This circumvented
the artificial limitations of Amazon's app store, which declined to offer Chrome for the device in favor
of Amazon's less-functional Silk browser.

The Operating System
Our current hardware runs ucLiunux, a compact version of the Linux operating system that runs on
devices without virtual memory. We run it on an ARM Cortex M3 CPU within the SmartFusion II chip,
which contains our gate-array on the same die. Our CPU is a single-core 200 MHz processor, and can
yet support a significant server, WiFi, Bluetooth, Ethernet, IPV4, both USB master and slave, and
FLASH storage. So, we have a capable server that will fit in your pocket with the radio.

Our software is actually a form of software-as-a-service, but with the server in your pocket! Thus,
there aren't the disaster-fragility problems of the usual software-as-a-service implementations. Our
server remains up on battery power and communicating with local devices via WiFi and distant devices
via Amateur Radio, regardless of the state of infrastructure around it.

It is expected that later devices will eventually run the full Linux system on virtual memory hardware,
rather than ucLinux. The selection of Cortex M3 rather than a larger CPU is due to our use of
SmartFusion II, which provides a FLASH-based gate-array which is capable of using battery power
efficiently. The smilar Igloo II gate-array which does not provide a CPU costs as much as the
SmartFusion II, so we essentially get the CPU for free!

The Web Communications APIs
At first, WebRTC appeared to be a desirable means of communicating between a browser and a radio.
It's designed for audio and video telephony as well as data communications, and includes “NAT
traversal” which solves problems with calls to systems on home networks from the outside. It's
connected directly to the web audio and video APIs, and automatically scales the data compression and
codecs used to make the best use of the available bandwidth.

What WebRTC lacked was a small, Open Source, embedded library that could serve it to a browser
client. Our software is Open Source, and we in general prefer to use Open Source both for economic
and collaboration reasons and because we can fix its bugs if necessary. The only Open Source software

111

stack available to us used a very substantial portion of the Google Chrome browser code. That was
overcomplicated and would not fit in our device.

With that determined, we switched to Websocket, a much simpler web API for creating a data stream
between a browser and another program. On the browser side, Websocket was easy to program in
Javascript, requiring only a few lines of code to handle the connection.

On the server side, we made use of libwebsockets, a compact Open Source embedded library in the C
language. This worked, and fit well in our low-resource CPU running ucLinux. Unfortunately
libwebsockets was not as mature as we would have liked, and has required some debugging of its
internals in order for it to work correctly in our application. This work was contributed back to the
project. Since our company benefits from the work of thousands of Open Source programmers, it's
only fair for us to join in that work on existing programs like libwebsockets, as well as to contribute
our own new software.

The Web GUI APIs
The web GUI is built using the HTML5 Canvas object, and its 2-D drawing environment. This
provides a Javascript API for drawing and animating all sorts of 2-D displays, buttons, and knobs,
using an imaging model descended from Adobe's PostScript. Canvas also supports a 3-D API which
we have not made use of yet.

Input comes from the keyboard, mouse, or touchscreen, and multi-touch is used to change the
bandwidth of the waterfall display using a “pinch” gesture in which two fingers are used to stretch or
compress the display.

Where a keyboard is available, the space bar is
used for push-to-talk. On touchscreen devices we
do not use push-to-talk, but a separate transmit
and receive button. This works very well on
smartphones. It's awkward to hold down a screen
device in the way we are accustomed to holding a
push-to-talk button on an HT, especially when
using a smartphone. However, there is an input
for a push-to-talk switch on the radio, and we can
make a PTT switch available via a USB or
Bluetooth peripheral. We have programmed a
library to make use of USB and Bluetooth
human-interface devices, and Various USB dials
and pedals have been tested.

Web Audio
The Web Audio API is an interesting creature, providing a graph of many different audio processing
nodes that can be connected to each other, including compression, gain, frequency equalization, and
even a node that runs a Fast Fourier Transform. It includes a means of acquiring the system

Illustration 6: A test of web push-to-talk.
Image copyrighted by the author and released under the same terms as this
paper.

112

microphone and loudspeaker and connecting them into this graph. All of this is meant to connect
directly to WebRTC, which has its own nodes that work in the audio graph. Because we use
Websocket, which has no such nodes, we add to this graph two nodes which process arrays of audio
samples and network data in Javascript, passing the data between the web audio API and Websocket's
interface to the network. Fortunately, Javascript is well-enough optimized that this runs well even on
smartphones, using substantially less than the full CPU resources.

A complication of the web audio API is that it does not allow the user to select a sampling rate, but
imposes its own, and this rate differs between platforms! Thus, a simple interpolation was programmed
in Javascript, and is used for both audio input and output, while the audio sample rate used for network
communications is set by the program. This works sufficiently well and there is still lots of CPU left,
even on a smartphone.

Another complication is that Websocket does not have access to the same means of compression that
would be used with WebRTC. At present we solve this by simply sending and receiving 16-bit data at
8K samples-per-second, a bandwidth that works well on Bluetooth, WiFi, and internet connections. It
would be possible, although perhaps awkward, to program entire codecs in Javascript. There have been
several efforts to define and implement a subset of javascript with high efficiency, which would be
appropriate for codec programming.

Putting It All Together
Using all of these APIs, we have created a complete radio front panel as two programs: a client
program that runs in the browser, and is coded in Javascript, HTML, and CSS, and a server program
that runs in our radio device, coded in C++. The server program stores the client program on the radio,
and sends it to the browser when the browser connects to the radio.

It would be awkward if it was necessary to type in a URL to connect to the radio. Indeed, the various
controls of the browser aren't really necessary for our radio front panel, and our screen would be neater
if we could get rid of the URL bar and the browser menus, buttons, and tabs. Fortunately, we can!
There is an evolving standard for packaging web programs as Apps, which allows them to be started by
touching an icon like a conventional app, and to run in full-screen mode without any of the usual
browser controls visible, only the controls in our own program. Once packaged this way, web
programs become indistinguishable from apps. They can be installed from an app store, or can be sent
to a smartphone by our radio for direct installation.

Security
Obviously, we must not allow unauthorized individuals to control our transmitters using web
interfaces. Fortunately, we have the entire set of security facilities used for other web applications:
encrypted network connections over WiFi or Bluetooth, logins and passwords, etc. But this is just the
start...

Authenticating Using Logbook of the World Certificates
Inspired by a paper at the TAPR conference by Heikki Hannikainen OH7LZB, and by the work of

113

ARRL's Logbook of the World designers, we have implemented a means for our radio to authenticate
strangers on the internet as licensed radio amateurs who are allowed to control a transmitter.
Individuals who have been set up by ARRL to use Logbook of the World are each sent a file containing
a x.509 public-key encryption certificate. We have instructions on how to export these certificates from
LoTW and load them into a web browser. Once an Amateur has done this, the browser will
cryptographically authenticate itself to our radio, communicating the amateur's identity and callsign
securely.

Thus, an Amateur can make the Algoram Katena radio available as a public facility on the internet, to
be used by Amateurs from all countries, and can be assured that only licensed Amateurs will be
allowed to connect to the radio. Since the software gives us the Amateur's call sign, it would be
possible to implement a means to automatically determine what privileges an Amateur of a particular
nation and license class should be granted when operating a transmitter in another nation remotely, and
to disallow operation on unauthorized frequencies and modes.

In Summary
Obviously, these are features that have never existed in a walkie-talkie, and have only been partially
attempted on a few experimental base stations. So, this is going to be a whole new world for Amateur
Radio. The rest of our hardware and software design is equally innovative, and will be presented in

114

S e i d e n b e r g S c h o o l o f
C o m p u t e r S c i e n c e a n d

I n f o r m a t i o n S y s t e m s

P a c e U n i v e r s i t y

P l e a s a n t v i l l e , N e w Y o r k

p p 4 0 8 7 9 p @ p a c e . e d u

h t t p : / / w w w . k c 1 a j t . c o m

An in-depth look at mesh networking using repurposed
WiFi equipment in FCC Part 97 Amateur Radio spectrum.

115

1

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

116

Table of Contents
Introduction 3

What is Broadband-Hamnet? ... 3

What is Amateur Radio? 3

Capabilities of Broadband-Hamnet ... 4

Science of 2.4 GHz 4

Uses for Broadband-Hamnet ... 4

Emergency Use .. 4

Known Implementations .. 5

Hands-On With Broadband-Hamnet ... 5

Continuing Work With Broadband-Hamnet .. 6

The Future of Broadband-Hamnet... 7

References 7

117

Introduction

What is Broadband-Hamnet™?

The Broadband-Hamnet website (http://www.broadband-hamnet.org) describes the system as the
following:

“Broadband-Hamnet™ (formerly called HSMM-Mesh™) is a high speed, self discovering, self configuring,
fault tolerant, wireless computer network that can run for days from a fully charged car battery, or
indefinitely with the addition of a modest solar array or other supplemental power source. The focus is
on emergency communications.

In its current form it is built using the Linksys WRT54G/GL/GS wireless routers and operates on channels
1-6 of the 2.4GHz ISM band, which overlaps with the upper portion of the 13cm amateur radio band.
Other platforms and bands include several types of Ubiquiti equipment in the 900MHz, 2.4GHz and
5.7GHz band. Additional features let signals come in on one band and leave on another without
additional configuration. All mesh nodes on all bands exchange data so long as they are within range.
We will be adding support for Ubiquiti 3.4GHz gear as well.”

What is Amateur Radio?

Amateur Radio is a “service” as defined by the Federal Communications Commission. Also called Ham
Radio, the service is a hobby, public service, and a method of emergency communications. Operators
must be licensed through an examination process by the FCC. The FCC has granted amateur licensees
use of different parts of the radio frequency (RF) spectrum ranging from 1.8 MHz to 275 GHz and
beyond.

As a hobby, operators can communicate with each other on allocated frequencies both locally and
internationally. Operators often try to contact others in as many counties, states, countries, or
continents as they can. Methods can include voice, Morse code, and text-based modes.

As a public service, operators provide, free of compensation, communications for countless events
across the country. Examples include bikeathons, marathons, charity walks, rowing events, car races,
and countless others. Many of these events are held in areas where cellular phone service may be
unreliable or nonexistent. Amateur radio is able to overcome this obstacle with ease.

As a method of emergency communications, amateur radio truly shows its mite. Many disasters disrupt
conventional communication methods. Phone lines can go down, cellular networks can be
overwhelmed, and power utilities can go down. Even police and fire radio systems can fail. What
happens when a police or fire radio tower collapses? Amateur operators are ready and willing to step in
regardless of the nature and severity of the emergency.

118

Capabilities of the Broadband-Hamnet

Science of 2.4 GHz

Broadband-Hamnet devices are typically used in the 2.4 GHz spectrum. This is because of the overlap of
IEEE 802.11g wireless networks with an amateur radio allocation in the 13cm band. There are some
considerations that have to be made when using this spectrum, though. First and foremost is the
propagation of a signal at these frequencies. Unlike HF (3-30 MHz) signals, signals at 2.4 GHz, at the
upper part of UHF (300 MHz to 3 GHz), cannot refract off of the Earth’s ionosphere and travel long
distances. As a direct result, the practical range of these devices is only up to about 30 miles in open
space with no obstructions. However, this cannot be accomplished with stock equipment or without a
tower. Standard WiFi antennas will only present up to a 6 dBi gain. Using specialized ‘yagi’ or parabolic
dish antennas, a gain up to 23 dBi can easily be achieved. Using this model, a point-to-point link of two
radio towers 30 miles apart with no obstructions and a perfect line-of-site can be achieved. A simple leaf
on a tree can interrupt a signal at this frequency, so planning and calculation is a must.

Uses for Broadband-Hamnet™

A Broadband-Hamnet system is capable of countless uses for both everyday use and emergency use.
The beauty of the BBHN system is that it is 100% internet, cellular, and telephone independent. These
three systems have been known to be unreliable in major disasters. Since the BBHN is based on
OpenWRT software, it supports any TCP/IP device. Here are a few examples of devices and services that
can be networked over BBHN:

 Computers
 Servers
 VOIP phones
 Radio Repeater Linking
 IP Cameras
 Weather Stations

The system is capable of up to 54 Mbps bandwidth, so it is capable of handling most services that are
needed, even live video.

Emergency Use

In a new modern era, even our emergency response requires a constant and stable stream of
information. This presents many concerns to first responders. Their work is often one-sided, get in, get
the job done, get out. In an era following disasters like 9/11, Hurricane Katrina, Superstorm Sandy, and
many other disasters, we have learned that a proper and accurate response requires the availability of
information. Using the recent and continuing events in Nepal as an example we can discuss some of the
ways BBHN could be used in a critical emergency. Now close to three weeks after the initial earthquake,

119

internet and phone service is still unreliable. Search and rescue groups such as the Red Cross have
massive databases with information on thousands of people. How does one access this information
when existing infrastructure is down? A BBHN node consumes minimal amounts of power and can be
effectively powered for a week on battery or indefinitely using solar panels. Why would response teams
want to depend on an already-crippled infrastructure to transport such critical information? Let’s look at
another use – video surveillance. In disaster zones, medical facilities and food distribution are key to the
mission of the area. The BBHN system can be used to serve video surveillance, monitoring the security
of these locations and the accurate operation of these facilities.

Known Implementations
Through further research on this awesome system, it was discovered that it is widely used across the US
and Europe. Most of these systems are used for the services discussed above. Below are just a few of
few known implementations in the US. Dozens more exist around the world, but many are not
publicized.

Heart O’ Texas Amateur Radio Club (HOTARC) – HOTARC maintains one of the largest known mesh
networks using BBHN. The mesh covers Waco, Texas and some surrounding towns. This system has also
served as a development platform for BBHN for a number of years.

Phoenix HSMM-MESH – This is a mesh in the Phoenix, Arizona area. This group is comprised of hobbyists
and is not affiliated with any groups.

RI Mesh – This mesh is appears to also be unaffiliated. The mesh is centered around Providence and
Pawtucket, Rhode Island.

Hands-On With Broadband-Hamnet
I spent a couple months working hands-on with Broadband-Hamnet and have documented my findings.

BBHN is extremely easy to use for anyone familiar with setting up wireless routers. I found that it takes
about 10 minutes to get a node up and running. This includes flashing the firmware and configuring the
settings as your mesh requires. The BBHN team has really great step-by-step instructions on how to get
up and running. It’s a very powerful system designed for use by the average person.

After getting 2 nodes configured and connected, I wanted to be able to assess their capabilities using a
system that many BBHN meshes already use – Voice Over IP (VoIP). I setup a Raspberry Pi computer
with an Asterisk phone server in order to get things rolling. Below is a graphic demonstrating the
implementation.

120

I was concerned that the VoIP phone adapters would not be able to easily communicate with the server
due to DNS difficulties, but there were zero problems with DNS or DHCP in BBHN. Again, this reinforces
that this system is designed for the common person.

Next was voice quality, how would these calls sound? Would they sound like the other caller is in the
same room or would it sound like a 1990s analog cellular phone in a tunnel? I was stunned with the
quality and stability of the call. It was crystal clear. As long as the bandwidth is available and a good path
can be made between the nodes, there should be no concerns with call quality.

Unfortunately, I did not have the capability to scale this test up using tower sites and greater distances. I
was able to conduct a test with a 110 foot line-of-site. Again, I experienced great call quality. It’s no
wonder that so many mesh users like to use VoIP.

Continuing Work With Broadband-Hamnet
The conclusion of this course will not conclude my work with Broadband-Hamnet. I plan on continuing
my study on the subject for the benefit of the amateur radio community. This will include a real-life
implementation and a number of community publications. I strongly believe that the community can
benefit from this system and improve our emergency communications capabilities.

121

The Future of Broadband-Hamnet
Citing current news from the BBHN website, the future of the system will be slightly altered. Recently,
Linksys (a division of Cisco), announced the end of support for their WRT router series. These are the
routers that BBHN was originally based on. BBHN support for these devices will not evolve beyond the
current version. Future versions will only be supported by Ubiquity WiFi and mesh devices.

Updates will also only be released every 6 months. The reasoning for this comes from how BBHN works.
Every node has to be on the same version of firmware in order to communicate. In order to have an
emergency-ready, rapid deployment system, the need for updating should be limited as much as
possible.

In the end, these devices are actually more inexpensive to implement and are designed specifically for
outdoor installations. Instead of installers having to purchase cabling and an antenna, the Ubiquity
devices are fully integrated and simplify the installation ten-fold. One user on the BBHN forums has
already conducted a successful 32-mile point to point test with this equipment. I am confident that this
is going to be a great direction for BBHN.

References

"Amateur Radio IP Networks." Amateur Radio IP Networks. N.p., n.d. Web. 15 May 2015.

<http://www.remoteamateur.com/Home1503.aspx>.

"Broadband-Hamnet." Broadband-Hamnet. N.p., n.d. Web. 15 May 2015. <http://www.broadband-

hamnet.org/>.

"HOTARC Hamnet Mesh." HOTARC Hamnet Mesh. N.p., n.d. Web. 15 May 2015.

<http://www.hotarc.org/mesh.html>.

122

123

124

125

126

127

128

129

130

Modulation – Demodulation Software Radio
Yahoo user group: https://groups.yahoo.com/neo/groups/mdsradio/info

MDSR website: http://users.skynet.be/myspace/mdsr

Build your own IF SDR
Introduction of MDSR V3.0

Alex Schwarz, VE7DXW; alexschwarz@telus.net
Guy Roels, ON6MU; guy.on6mu@skynet.be

Accomplishments since the last publication

Base Station setup
The MDSR test station currently in use is a
modified FT-950 from Yaesu. The transceiver is
connected to a Hy-Gain 18HTjr vertical antenna
on top of a 3-storey building. Ground is
connected to an iron riser pipe. The station is
located on a foothill 10 miles north of Vancouver.
Power output is 20W for digital modes and 100W
for voice.

The computer running the MDSR software is an
i5 processor running at 3.4GHz with 8GB of
RAM. The installed operating system is either
64bit Win 8.1 or Ubuntu 14. The sound card
installed is an ASUS Xonar Essence true 24bit
Performance. The on-board sound device is a
Realtek High Definition on-board audio device.

Mobile setup
The mobile setup is a modified IC-
7000. The antenna is a telescoping
HF antenna from Hy-Gain (MFJ-
1979) with homebrew loading coils
for 40 and 80m (left); used for
stationary operations. A 4-band
antenna (CR-8900 - 10m, 6m, 2m,
70cm) is used while driving (right).
The home made antenna rack fits
multiple vehicles and can be
transferred from one vehicle to the
other in minutes. The rack includes grounding rods that can be connected on each
end for better performance in stationary operation.

131

Mobile setup of MDSR in a Honda Element
The IC-7000 radio is mounted in the lockable glove
compartment which is closed while the car is parked or the
radio is not in use (computer and BiLIF are packed away
in a box).

The silver box on the dash contains the BiLIF unit and the
Xonar U7 USB soundcard, made by ASUS.

The computer running the MDSR software is an ASUS
Transformer T100 book running Win 8.1 32bit. It also runs
the digital communication programs for JT-65 and WSPR
which use the internal sound card.

A USB hub connects all the devices together. The IF and
the PTT connection come from the transceiver and plug
into the BiLIF.

Note: The IC-7000 does not need a control head – all
functions are performed by the MDSR software via CAT
control. The IC-7000 control head is only used during
mobile operations.

Portable Setup

The portable setup consists out of a modified FT-817, a silver box that contains the BiLIF and the USB
sound device. The mic/headset plug connects to the web-book internal sound card for digital operation.

The Portable MDSR system packed away in 2 travel cases for easy transportation

On the left (smaller case) the antenna utility box contains all various antenna parts, such as loading
coils, antenna extenders and the mounting bracket. The long rod across both cases is the MFJ-1979
telescopic antenna which extends to 5m (15ft.). It does not fit into the cases and has to be carried
separately.

In front of the small case is the Asus T-100 Transformer book, which runs the MDSR software.

132

The big case contains all the wire connectors,
chargers, power adaptors, hub, spare batteries
(8 x 2500mA/h NMH) and the antenna cable
(hidden behind the lid cover) and the BiLIF-
U7 sound device box (silver). The ASUS T-
100 can be wrapped in towels and laid on to
of the FT-817 for transportation. The standard
NiCad battery pack in the FT-817 has been
replaced with 8 2500mAh NiMH re-
chargeables. The battery pack has been
modified to allow charging of the batteries
without removing them from the radio.

The whole setup weighs less than 15lb. One
charge lasts for about 4h of operation (TX
output reduced to 2.5W).The batteries can
either be charged from the mains or with 12V
from a cigarette lighter adaptor.

Awards received and in progress
 WAS50 in mixed bands for JT-65 mode
 Worked all continents of the world in mixed bands for JT-65 mode
 100 Grid Squares in mixed bands for JT-65 mode
 Worked 53 states (confirmed 44 on e-qsl and 31 on QRZ.com) as of June 2015

Hardware
The LIF2014 kit was released. The schematics and the components are identical to the previous
LIF2012 kit that has worked so reliably. The only update was the footprint of L1 to make it easier to
assemble the unit.
A lot of Hams have already built and implemented the kit into their station setup; they use it every day
for standard operations.

Software
The MDSR Team has released the MDSR V2.9 last fall. This release added notch filters and adaptive
filters for SSB, CW and broadcast audio. The graphic user interface was also changed to allow for
better navigation and to reduce the footprint on the screen. If the MDSR is used only for RX operation
the window size can be reduced to only show the button and display for this task.

The post-processing filter options
Depending on the mode the MDSR is in, different filter options are displayed. This allows the
optimization of each post-demodulation filter for better overall performance of the MDSR while
receiving. In addition to a variable bandpass filter, one auto notch and one manual notch filter can be
utilized to eliminate interfering signals.

Note: AM mode does not have an auto notch filter.

133

Version 3.0 was launched in February 2015. It received a totally new DSP engine to upgrade to the
Jsyn 100% Java sound synthesizer. Now the MDSR core software can be adapted to all Java capable
computers such as Linux, Ubuntu and Apple.

The MDSR V3.0 can be downloaded from our website and used for free for amateur radio purposes.
For more info please visit our website or join the Yahoo user group.

New S- and Power Meter for the MDSR V3.0
The updated RF meter features a dual color display for RX. It turns
blue while in TX mode. In receive the scale is in S units, and the
meter displays Pout [%] during transmit.

The new “MDSR SA” Spectrum Analyzer
Introduction
Implementing the latest Jsyn DSP software in the MDSR V3 also gave us access to advanced signal
processing devices such as FFT and IFFT conversion units. Our team started to develop a spectrum
analyzer by using a spectral filter. This filter creates a 420 line audio spectrum (0 – 20 kHz) with a
resolution of about 47Hz per line. After the first attempt to connect the SA to the IF of the LIF
converter the result was encouraging, but the bandwidth response of the receiver’s IF looked like a
“hump”. This made the detection of signals very cumbersome and useless for level comparisons.

The idea was born to compensate each spectral line individually so that the result was a flat spectrum.
This is not practical, though, because it would take the user hours to adjust all 420 line levels
individually. Sweeping the bandpass was another option, but this would require a RF sweep generator.
Most amateur radio operators do not have access to such an instrument. Another option was to measure
the receiver’s filter responses with RF noise, by tuning the radio to an unused section of the band and
then taking a noise peak measurement for each frequency line.

The noise that is received on the antenna port is constant over a wide part of the spectrum. Therefore
all the level differences are caused by the filter pass of the input and IF filters. So what looks like a
“hump” – when noise is received – is really a flat spectrum. Now the DSP could be programmed to
measure the peak level of each spectral line, calculate its attenuation and store the result in a table.

134

To obtain a flat spectral readout now only requires a simple multiplication of the corresponding
attenuation factor by the current spectral input level. The result is a displayed spectrum that is flat. In
essence the effects of the receive filtering, which are important for the radio’s performance, have been
mathematically removed.

How do Spectral Filters work?
Introduction
Spectral filters are a very interesting way to manipulate and create signals. The standard oscilloscope
only measures voltages as the sum of electron pressure in conducting materials over time. It does not
provide a frequency-separated display that shows the dynamic behavior of all the different groups of
electrons that make up the electric current. These groups of electrons can move back and forth at
different speeds (frequencies). The more electrons move in one direction, the higher the amplitude.
Frequencies or tones are in essence oscillating electrons.

If tones are to be manipulated, it is much easier if the signal is separated by frequency (tones) than by
time. Unfortunately it is much harder to display electrical behavior of a conductor in the frequency
domain than in the time domain of an oscilloscope. This is also true in DSP (digital signal processing).

What is FFT (Fast Fourier transform)?
In DSP the frequency domain is so important that engineers developed special programs called FFTs
that take streaming audio or video data and separate it into multi-channel data flows. FFTs can have
1000 or more channels separated by frequency; these are termed bins. These individual data flows can
now be observed by frequency and amplitude for a specific behavior. A host program can display the
data as a spectrum on a screen or make decisions if certain signal patterns are present. The applications
of this technology in the radio field alone are almost limitless.

What is IFFT (Inverse Fast Fourier transform)?
In DSP, IFFTs has an almost equally important role. IFFT and FFT are mostly used in pairs. Whereas
FFT separates the input signal into different frequency channels the IFFT does exactly the opposite. It
takes all the FFT bins – after they were processed – and combines them together into a time domain
output that can drive a speaker after it has been turned back into an analog signal by a DAC (Digital to
Analog Converter).

Applications
• Removing unwanted frequency bands
• Shifting frequencies or bands of frequencies up and down
• Removing unwanted carriers or static crackle
• Modulation and demodulation (digital or analog)
• Adding control tones
• Creating noise

135

Spectral Filter example with FFT / IFFT pair of 420 channels (BINs)
An AM signal is fed to the ADC and changed into a stream of numbers relating to amplitude.

-10

The now digitized signal is put through a DSP process called FFT

The FFT filters frequencies and stores the signal stream in BINs (table representation)

136

Signal manipulation based on frequency (removing Bin 210 - 212)

Performing an IFFT (Inverse Fast Fourier Transform) and sending the data stream to a DAC will
recreate the analog signal without the carrier.

Disadvantage of FFT filters

• All the data manipulation is processor intensive and delays are an issue. The program needs to
reduce the amount of DSP data to the bare minimum before executing DSP functions. The
software instructions need to be as basic as possible. Avoid coding that requires access to
higher functions or peripherals such as keyboard, mouse or displays.

• The DSP processes can create huge amount of data. A 24-bit DSP chip with an FFT having
1000 channels and a sample rate of 192kHz creates 4.608MB of data every second!

• A fast computer is required to get the speed performance needed. Good coding can assist in
reducing processor requirements.

• Signals can sound tinny and robotic due to the FFT- IFFT process. A good understanding of
how to configure the DSP properly is a must.

• The high price of components and the availability of high resolution digital converters are
limiting factors.

137

MDSR SA

Introduction
The new spectrum analyzer is written 100% in Java – including the DSP – and enhances the MDSR software on
a Linux platform. Since it is written in Java it also will work with the existing
MDSR installation in Windows.

One of the issues with viewing an IF spectrum from an analog transceiver via a sound card interface is the
inconsistency of the IF amplitude and the narrow bandwidth. This makes the spectrum look like a hump with no
signals on either side. To overcome this we have developed anew feature called SAC (spectral amplitude
correction) which measures the attenuation of the IF and applies a correction value that greatly flattens the
spectrum.

This document will also explain how to install and run the software in the above mentioned operating systems. A
detailed manual is also provided.

This is a working document which will grow in size as we explore the possibilities of this new software. If you
would like to join us and work on the continuing project, please register at the

MDSR Yahoo user group here:

https://groups.yahoo.com/neo/groups/mdsradio/info

Information on how to connect a receiver or transmitter to the soundcard can also be found at our

website hosted by Guy Roels (ON6MU):

http://users.skynet.be/myspace/mdsr

Acknowledgement:
Special thanks go to Phil Burk for providing the Jsyn FFT sound interface free of charge for this project.

Installing on Windows with MDSR already installed.
Download the “Spectrum Analyzer. jar” from the Yahoo use group. Look in the file section in the “New SA for
MDSR” folder. Copy the file into “MDSR” directory. Create a desktop shortcut. The program is started by double
clicking the file or shortcut.

Note: If the spectrum analyzer is used without the MDSR, additional library files are required.
Create a “lib” folder inside the folder holding the “Spectrum Analyzer. jar”. This “lib” folder and its contents can
also be downloaded from the group.

Installing on Ubuntu (Linux), Apple Computer
Download the “Spectrum Analyzer. jar” from the Yahoo user group. Look in the file section in the “New SA for
MDSR” folder. Copy the file into MDSR directory. Create a desktop shortcut. The program is started by double
clicking the file or shortcut.

• Make the file executable by going into properties – permissions and checking the “Allow executing file
as program”

Note: If the spectrum analyzer is used without the MDSR, additional library files are required.

Create a “lib” folder inside the folder holding the “Spectrum Analyzer. jar”. This “lib” folder can also be
downloaded from the group. It contains three files that are required to make the program work.

Press the “Start” button to turn the spectrum analyzer on

138

Setting up the Soundcard or Device
The sound setup of the “New MDSR Spectrum Analyzer” is identical to the setup of the MDSR software. It
always uses the default audio device, and can share it with other software at the same time. For more
information on how to install and configure the LIF converter, go to the MDSR website or user group. If you have
already set up the MDSR software, all the audio settings are identical. Both programs can work simultaneously
without mutual interference.

Functionality of the Spectrum Analyzer
Introduction
This spectrum analyzer provides a span of spectrum for the audio spectrum of a sound card. It is designed to
work with the MDSR software, but can also be useful for analyzing audio spectrum. It has a peak hold feature
and a slow decay indicator.
The new SAC (spectral amplitude correction) feature and how to use it will also be covered in this manual.

Updated in the new version V1.1
• New line decay mode: double spectral lines in “decay-line mode”.
• Input Audio selector: allows the user to select the left, right or both input audio channel
• Storable correction curve files: correction curves can be stored according to band
• Spectrum analyzer stores previous settings: for easy startup without calibration
• Updated graphic user interface

The new MDSR Spectrum Analyzer V1.1
Below is the graphic user interface for the new MDSR spectrum analyzer with the corrected display. The DSP
removes the filter skirts which cause the spectrum to appear bent downwards at the edge of the filter passband.
A flat spectral trace – like the one on a high-end lab spectrum analyzer – is displayed.

139

Correcting the filter skirts to obtain a flat spectral response

Correction Procedure
The correction procedure is a two step process where the filter noise response is captured and stored in the
computer. Once the curve had been captured, it is applied to the spectrum and a normalized spectral display
results. The filter noise response depends on the noise loading and the band the transceiver is on. The noise
response can be saved and recalled for each band separately.

How to calibrate and correct the filter response in the MDSR SA
Depending on the speed of the computer used, this calibration will take about 10s or longer.

1. Tune the receiver on the specific band in use to an area that has no signals. Set the attenuators to 0dB
and the preamps to OFF.

2. Under the “Corrected Spectrum” heading set the selector box to “normal”. The spectrum changes back
to the real display with the filter skirts (Fig. a).

3. Press the “Equalize” button and a display similar as seen below appears (Fig. b). The white dots
indicate the flat response of the corrected spectrum. The green line represents the correction values. If
the green line is not visible, move the “y-Gain’ and/or the
“Ref.Level” controls until it becomes visible. If there are signals present, they will be seen as large
spikes on the filter curve. Tune to another spot without signals and repeat the measurement starting at
1. Small spikes, like the ones below, will be filtered out and a flat spectrum is displayed.

4. Press the “Correct” button to verify the correction line and to display the corrected flat display. Use the
“y-Gain” and/or the “Ref.Level” control to adjust for best visibility.

5. If the spectral line is not flat, repeat the process.

Note: The measurement must be done with the antenna connected, so as to obtain band noise to measure the
filter response.

Calibrate and correct the filter response in the MDSR SA using a white noise generator
The spectrum display correction curves can also be generated with the use of a wide band white noise
generator, such as the MFJ-5014. To get the best results, the antenna noise level and the generated noise level
have to be identical.

The output of the generator is connected to a step attenuator such as the MFJ-762 and then to the antenna
input of the receiver. If the receiver has dual Antenna inputs, the RF noise can be connected to Ant 2, while the
regular antenna is connected to Ant 1.

1. Connect the Antenna to the receiver and set the attenuators to 0dB and the preamp to OFF (Ant 1).
2. At the receiver, select the band to be measured.
3. In the “Level [dB]” box (bottom left) note the displayed level in the “noise” field.
4. Connect the receiver to the noise source (Ant 2).
5. Adjust the attenuator so that the displayed noise level is the same as that from the antenna.
6. Continue the above procedure at #2.

How to store the filter response in the MDSR SA for later recall
Once a flat filter response correction curve has been calculated and the corrected spectrum is flat, it can be
stored on the computer’s hard drive. Since the flatness of the display is dependent on the band and the noise
loading, the MDSR SA has the capability to save one correction curve per band. Currently the MDSR SA stores
curves for 160, 80, 60, 40, 20, 17, 15, 12 and 10 meters. After a flat spectrum has been calculated, it can be
archived by following the above procedure for a specific band:

1. Under the “Correction Curve” heading, select the band that is currently in use.
2. Press the “Save” button. This will store a file containing the correction values.
3. Repeat the above procedure until all bands have a correction curve file.

140

How to recall the filter response in the MDSR SA

1. Under the “Correction Curve” heading select the band that is currently in use.
2. Press the “Load” button. This will recall a file containing the correction values.
3. The displayed spectrum is now corrected and should be flat.

Note: If the selected band does not have a correction curve, a warning message will appear.

Fig. a.) Spectral Display without correction (line mode)

Fig. b.) Spectral Display while calibrating (line mode)

Fig. c.) Spectral Display after correction (bar graph – decay option)

141

Description of the user functions.
Introduction
This section describes the all the individual user controls and how they affect the displays and functionality of
the MDSR SA software. Familiarization with their use and effects will allow you to adjust the display properly
and to get the most out of this program.

Start Button
The “Start” button initializes the DSP and turns the spectrum analyzer on.

RST button
During operation, some sound devices build up a delay over time. This occurs, because the clocks of the FIFO
data exchange buffers are not synchronized (a hardware issue). If there is noticeable delay, the “RST” button
can be pressed to reset and clear audio buffers for lowest lag time.

Exit Button
The “Exit” button stops and removes the DSP engine from the computer and closes the program.

Dominant
The “Dominant” field displays the frequency value of the spectral line with the highest value.

When the spectrum is corrected, the highest amplitude may not be the dominant frequency.

Option (selector box)
The “Option” selection box has three options.

 Normal: (default) displays the spectrum as a single graph.
 Peak hold: displays the graph including its highest value. The highest value is held on the

display indicating its frequency position.
 Decay: displays the normal graph including a time-lagged, delayed decay graph. This makes it

easier to spot intermittent carriers.

Graph (selector box)
The “Graph” selection box allows choosing the line display or the bar graph display. The “line” setting is the
default start up parameter.

Y-Gain
The “Y-Gain” slider changes the amplification of the displayed spectrum. It acts like a volume control and makes
the spectral peaks longer or shorter depending on the setting.

Ref. Level
The “Ref. Level” control shifts the displayed spectrum up and down so that it can be placed properly in the grid
display for easy readability. The control acts similarly to a fader on a stereo system. “Ref. Level” does not
change the amplification of the display, but only its position.

BW (selector box)
The “BW” selection box provides three settings

 20 kHz (default) provides a spectral display with 420 points at a resolution of 47 Hz. For the MDSR or IF
display the 20 kHz selection has to be used to allow for proper placement of the red BFO line. The
displayed spectrum is 0 – 20 kHz.

 The 10 kHz option can be used for audio processing and analysis. The spectrum displayed is 0 – 10
kHz. It will not center on the BFO line on the IF signal. It also has 420 display points with a spectral
resolution of about 23 Hz.

 The 5 kHz option can be used for audio processing and analysis. The spectrum displayed is 0 – 5 kHz.
It will not center on the BFO line on the IF signal. It also has 420 display points with a spectral resolution
of about 12 Hz.

142

V-Filter (selector box)
The “V-Filter” (video filter) processes the spectral data and acts like a low pass filter to make the displayed
spectrum smoother. There are five levels of filter intensity; 1 is the weakest and 5 the strongest. In the lowest
setting (1) all the individual spectral lines are displayed. In the strongest setting the display lines are combined
making it easier to see the spectral intensity of a SSB or broadcast signal. Default setting is 3.

X-Grid (spinner selector)
The “X-Grid” selector allows calibrating the spectral display with an internal or external signal source. The
spectral display and the grid do not automatically line up, so it needs to be calibrated manually.

 Calibrating using the internal reference signal:
Set BW to 20 kHz, and turn on the “Test Signal’ generator by setting the spinner control to 10. This puts
out a white noise signal with sine wave peak at 10 kHz. Now, use using the “X-Grid” control, move the
spectral peak behind the red center line. This will also calibrate the 5 kHz and the 10 kHz bandwidth
selection.

 Calibrating using an external reference signal
The “X-Grid” control can also be used to be aligned with an external signal such as the carrier of an AM
station, the radio’s calibration marker or a BFO. In this case the computer soundcard needs to be
connected to a LIF converter and a receiver.

Test Signal [kHz]
The “Test Signal” selector allows adding an internal noise source and sine wave oscillator to the input of the
spectrum analyzer. The test signal can be used to simulate the input for display or calibration purposes. Setting
X-Grid (spinner selector) to 0 will turn the test signal off. Now the DSP is set to accept input from the audio
default device.

Refresh Time
The “Refresh Time” default setting is “0”. This setting is the fastest, and if a P4 or higher processor is used the
spectrum refresh rate is high enough to provide a nice, dynamically flowing spectral display. The FFT process
needs a lot of processor time, and it can easily consume 60% CPU resources or more. This may affect other
applications, and therefore a refresh time throttle is needed. Set the refresh time lower if other applications start
to hang or are otherwise affected during the operation of the spectrum analyzer program. The refresh time
indicator displays the time in mS for each sweep. Newer processors can be as fast as 1 to 2 mS.

Equalization (selector box)
The “Equalization” selector has three options.

 normal: the displayed spectrum is not corrected
 corrected: the display is normalized using the loaded correction curve.
 calibrate: this is used only during the calibration procedure – do not select manually.

Equalize button
The “Equalize” button should only be pressed after the receiver has been tuned to a section of the band without
signals. During this operation, the DSP measures the filter response curve which can be viewed on the display.

Correct button
The “Correct” button activates the currently active (loaded) correction curve and corrects the spectral display.

Select Input
The input selector chooses the input channel of the default sound card. Three options are available (both, left,
right).

Level [dB]
Under the “Level” label there are two fields that display the average noise level and the peak level per scan in
dB relative to 1Vpp. These two variables are used to determine the bin with the highest amplitude, so as to
calculate the dominant frequency value. The noise level indicator is also used for correction curve
measurements.

143

Bin Value Evaluator
The “Bin Value Evaluator” consists of the bin value field and the bin number selector. The bin value field
displays the correction value of the bin selected. This allows the user to view and edit stored correction values.

Note: A red marker bar is displayed in bar graph mode indicating the position of the displayed correction value.

Corr Button
The “Corr” (correct) button calculates the current displayed bin correction value by taking the adjacent values
and averaging its position. This can fix miscalculated values which can cause holes or peaks in the spectrum.

Man Button
The “Man” (manual) button updates the manual entered correction value for the displayed bin.

Correction Curve
In the correction curve box, the option box selects the band that either saves or loads the correction curve data
into the DSP. The “Save” button save the currently active correction data. To recall correction data, the “Load”
button is pressed. The display is updated immediately.

Congratulations!
Now the new Spectrum analyzer for the MDSR is working and calibrated. Please follow the instructions and tune
the new MDSR SA for best performance. We hope that you will have a great experience with the new spectrum
display. If you have any questions or recommendations regarding this software or would like to get involved,
please join us at the Yahoo user group:
http://groups.yahoo.com/group/mdsr/

Thank you for using the MDSR. Please tell your friends about this project.

All the best,

MDSR Team

June 2015

144

Design of a Practical Handheld Software Radio: Part II

Chris Testa, KD2BMH
Los Angeles, CA
testac@gmail.com

October 9, 2015

Abstract

The design of a standalone battery powered Soft-
ware Defined Radio (SDR) is presented. Three
rounds of prototypes were designed, built, and
tested over the last three years. The hardware ar-
chitecture of the newest design is detailed, with
the goal of getting the device into the field to
build real RF links. The software stack, from
the high-level websocket user interface down to
the embedded Linux operating system are dis-
cussed. Finally, the latest work on the Field Pro-
grammable Gate Array (FPGA) modem are pre-
sented, including optimization work that drasti-
cally improves simulation performance.

Keywords

software radio, low-power, embedded systems,
Linux, FPGA, DSP, quadrature transceivers, RF
system analysis

1 Introduction

In 2012 I reported my first success along the
way of developing a new type of Software De-
fined Radio[1]; one in which the whole SDR is
contained in a single, portable unit. I was espe-
cially inspired to do this for my love of backpack-
ing, and I continually find myself in the position
where I really want to have radio communica-
tions available in places where today you can’t
expect them.
The dream, as Eric Blossom wrote in the ar-

ticle Exploring GNU Radio[2], is to stretch the
”smarts” of the Internet out from the cell towers
to everyone’s smartphone. The belief which I still
hold today, is that if we all carry around a base
station, we will be well on our way to distributed
and fault tolerant Internet access worldwide. I
know that this is a lofty goal, but with the right
tools we can begin to explore new frontiers in
networking.
My key goals for the project are to:

• Design and build a standalone, software de-
fined transceiver that works with commonly
available Amateur radio modes.

• Make it easy to use by providing connectiv-
ity and extensibility layered on top of Open
Source software.

• Focus on small footprint and low power
consumption to enable portable operation,
much like with a cellular modem chipset.

1

145

At the time I presented at the DCC 2012, I had
never designed or laid out a radio circuit board
before. I studied Computer Engineering at the
University of Maryland, College Park, and I’ve
loved ripping apart computers from a young age.
Radio Frequency circuits are an entirely different
beast, however. There’s a huge learning curve to
building a SDR from scratch, and the remainder
of this paper will detail the evolution of the de-
sign, and the things which I learned along the
way.

2 Hardware

2.1 Design Evolution

The first pre-alpha design was completed thanks
to the WIESEL laboratory at the University of
Utah, and with the help of my good friend Aaron
Schulman. Aaron at the time was finishing his
PhD in Computer Science at University of Mary-
land. I built the first transceiver by ordering de-
velopment kits for all of the main integrated cir-
cuits I wanted to use: a SoC FPGA1, a quadra-
ture transceiver, a frequency agile VCO & PLL,
and Analog to Digital / Digital to Analog con-
verters. Plugging them all together, and getting
access to a real RF lab, meant that I could build
the proof-of-concept and make sure that the core
idea was sound.

Building a radio from discrete components
turns out to be a difficult problem. The art
of building a receiver is a complex and detailed
one, full of tradeoffs between power, price, per-
formance, size, and many other factors. Further-
more, a core concern for me was that I needed
to build a quality transmitter as well. This ulti-
mately turned out to be the most difficult chal-
lenge.

The first custom board, Whitebox Alpha, was
built at the University of Maryland, College
Park, with the help of Aaron. The build oc-
curred four months after the first time I presented

1System on Chip Field Programmable Gate Array

Figure 1: Whitebox Alpha

Figure 2: Whitebox Bravo

the design at DCC 2012. I fabricated two 4-
layer PCBs with Sunstone Circuits, and ordered
parts from major distributors in the USA includ-
ing Digi-Key and Mouser. I also ordered a sol-
der paste stencil. Most of the components were
on the top, so I solder-pasted the side and then
carefully placed the components with tweezers. I
used a hot plate to solder on the components. It
worked quite well, except for the connector for
the computer, which I had to have professionally
put on to get a good connection. Ultimately, the
computer worked on this design but the IF os-
cillator was unable to lock reliably, due to me
messing up the nets around the PLL Loop Filter
and VCO’s tank circuit.

146

Figure 3: Whitebox Charlie

Whitebox Bravo was built at a contract man-
ufacturer (CM) in Carlsbad, CA, and I really
enjoyed using the surface mount assembly line.
This one came together around one year after
the build of Whitebox Alpha. My goal here was
to really focus on the core RF system and ver-
ify that I could design a PCB that would radiate
RF. The design had around 130 components on
it, and I was able to get all of the PLLs to lock.
I began to work on the full RF signal chain. A
major problem that I had still at this point was
that I had no RF test gear. In particular, if you
plan to make a radio without a calibrated RF
Signal Generator and RF Spectrum Analyzer, I
wish you luck! Those tools are critical to under-
stand the behavior of your creation.

After a year of working on Whitebox Bravo,
Bruce Perens K6BP started to acquire Boat An-
chors and ship them my way to help me be able
to understand the intricacies of the second pro-
totype. The lessons were clear - the various sub-
circuits need appropriate RF filtering to connect
them together, and the transmitter needed addi-
tional circuitry to calibrate it for spurious emis-
sions requirements. Given that I could solve both
of those problems, the device would be ready for
serious amplification and to be used by others.

Whitebox Charlie, was designed over a 7
month time span starting directly after the DCC
2014 Sunday Seminar that I did on FPGA

SoCs[5]. This board is a full five times more com-
plicated than the previous design. The goal this
time was to get the board off of my bench and
into the field. It sits inside of a 160mm x 75mm
extruded aluminum case from Hammond Mfg. I
use U.FL connectors on every important RF net.
I can always not stuff them after I’ve figured out
the design issues. The fabricated PCB is 6 lay-
ers and the additional two microstrip layers allow
for a much more dense route while maintaining
signal integrity for the critical RF traces.

2.2 Baseband Subsystem

The entire design received an overhaul based on
the lessons learned from the previous prototypes.
For power input, there is transient voltage sup-

pression, reverse polarity protection, and high
voltage filtering to condition the noisy signal
coming from a car battery as it is charged via
its alternator. Two on-board switching regula-
tors provide efficient digital power at 3.3 and
5 Volts for the embedded computer and its pe-
ripherals. A wide input-voltage tolerant 5 Volt
Low-Dropout Regulator (LDO) provides analog
power, and a 3.3V regulator stems off of this
for the analog circuits on the baseband. The
analog portion of the board can be turned off
from the microcontroller by setting a global En-
able flag low. Wakeup times from this state
should be on the order of 100ms. There are other
standby modes available that trade wakeup times
for static power dissipation.
The System on Module contains the baseband

embedded ARM Cortex-M3 and FPGA [3]. It
is in a separate daughter card which plugs into
the main board. The main reason to not place
this component myself is to not have to deal
with the 484 pin BGA package, in addition to
the BGA packages for the on-board LPDDR
RAM (64MBytes) and Flash (16MBytes). Rasp-
berry Pi B+ 40-pin and 8-pin (mostly) compat-
ible headers are available for custom expansion.
You’ll have to try individual boards to see if they
fit, and to see if you can get the driver ported.
I expect most WiFi, Bluetooth, GPS, and Au-

147
Figure 4: Baseband Subsystem Schematic

148

dio CODEC devices to work out of the box, but
your mileage may vary. I maintain a official list
of working devices in the codebase.
The system module supports standard com-

puter peripherals including USB On The Go
(OTG) and 10/100 Ethernet. There are 6 LEDs
on board covering RESET, Power, PTT, and
three for user control. The RESET and PTT sig-
nals also expose Open-Drain outputs so that way
you can control much higher voltage equipment,
like a 100W power amplifier and a T/R switch.
The only externally exposed button is a RESET
button, but there is a 100-mil header ready for
you to tap in for Reset, PTT and dit-dah paddle
inputs. All inputs are double-layer Electrostatic
Discharge (ESD) protected for ruggedness.
The clocking subsystem uses a high-

performance, low phase noise 10MHz Tem-
perature Compensated Crystal Oscillator
(TCXO) to provide the main sampling clock
for both the analog and digital sections of the
mixed signal system. A clock buffer distributes
the signal to the PLL reference inputs, as well
as to the ADC and DAC. A transformer coupled
external 10MHz reference can be applied as well,
and switched in by changing a jumper.
The CODEC is the most important set of com-

ponents for transceiver performance on the base-
band side of the design. For this project I am
building a quadrature sampling transceiver, so
the ADC and DAC must be of the dual, simul-
taneous sampling variety. This design features
operational amplifiers at the inputs and outputs
of the ADC & DAC respectively. The reason
for this, which I did not understand for earlier
designs, will be explained later in the section
on overall system performance. A tradeoff must
be made between sampling speed, sample reso-
lution in bits, and power consumption. In this
case, I chose a 10-bit ADC and am operating it
at 10MSPS. The DAC is also 10-bit, 10MSPS.
We would ideally move to 12-bit models, but the
oversampling does help somewhat for maintain-
ing overall system dynamic range.
An additional 8-channel auxiliary ADC is used

to observe the following signals: transceiver tem-

perature, input power voltage, received signal
strength, transmitter calibration signals, and
PLL test points. An additional 4-channel aux-
iliary DAC is used to calibrate the baseband
transmit signal coming out of the communication
DAC. The objective of this circuit is to minimize
local oscillator feedthrough. The transmitter cal-
ibration routine will be described in more detail
in the next section.

2.3 RF Subsystem

The RF portion has its own power tree to iso-
late the subsystems as much as possible. Numer-
ous rails are required, and LDO’s were chosen for
low noise and high Power Supply Rejection Ra-
tio (PSRR). There’s a 3V rail for the Low Noise
Amplifier, a 3.3V Rail for the VCO’s, and a sep-
arate 3.3V regulator for the rest of the analog
subsystems. A 1.8V LDO supplies current to the
RF Gateway.
The RF Gateway is a simple SPI slave designed

in a cheap CPLD from Xilinx. The gateway talks
to the main computer via SPI, and then con-
trols the various RF and amplifier switches. This
turned out to be cheaper than using discrete logic
gates, and is safer than using just GPIOs. For
example, it’s not possible to turn on the Power
Amplifier when receiving, thus reducing the like-
lihood of blowing the amplifiers.
Due to the superheterodyne architecture of

the quadrature transceiver, two local oscillators
are needed. The first oscillator works with the
quadrature modulator & demodulator to go from
the fixed Intermediate Frequency of 90MHz down
to baseband. Since this oscillator’s frequency
never changes, it’s Loop Filter is optimized to
trade lock times for reduced phase noise.
The second oscillator works with both the re-

ceiver’s mixer, as well as the transmitter’s im-
age reject up converter. This oscillator has
very demanding requirements. It needs fine fre-
quency resolution, fast lock times, and low phase
noise. These conflicting requirements means that
a tradeoff has to be made. Both oscillators have
available U.FL connectors so a new oscillator can

149
Figure 5: RF Subsystem Schematic

150

be plugged in depending on the application.
The core transceiver chip comes from CML

Microsystems[4]. This transceiver has a very de-
tailed manual and I’ve read it more times than I
care to admit. There are many features of this
chip and I will explore some of them later when
we get to talking about the integrated design.
Between the core transceiver and the antenna

jack, there sits a lot of additional RF circuitry
that was not in the Bravo design. On the trans-
mit side, after the signal leaves the transceiver
chip, it flows into one of four bandpass filters in a
selectable filter bank. The goal is to cut out spu-
rious emissions that leak in from the harmonics
of both oscillators.
After filtering, the to be transmitted signal can

be sent down two paths: the first is to the power
amplifier (20dBm maximum output) on the way
to the antenna, while the second path goes to
a RF log detector. The Log Detector is used to
measure the signal strength of spurious emissions
and is used to calibrate the transmitter’s oscilla-
tor leakage and undesired-sideband suppression.
For the receiver, a switch lets you choose be-

tween two different signal sources. One comes
from the transmit-receive switch, while the other
comes from a built-in RF noise source. The noise
source is built using an avalanche diode that is re-
verse biased very close to its breakdown voltage.
The output of this signal is amplified and pre-
sented to the receiver chain as a self-test feature.
Whichever receive signal is chosen, it then flows
through the onboard bandpass filter bank and
into an LNA. The LNA provides 14dB - 20dB of
gain depending on the frequency. The final step
as an RF signal is through a matching network
on the way into the transceiver chip’s mixer.

2.4 System Performance

A very important step, which was accomplished
early in the Carlie design phase, was to do a full
RF System analysis. The goal here is to start to
look at how the transceiver would operate in a
real RF link. An important thing to remember
while reading this section is that when we talk

about RF signals, we really want to talk about
power, and not in terms of voltage, current and
resistance. So put aside Ohm’s Law for the mo-
ment (though don’t forget it!) and remember the
power laws P = IV = V 2/R = I2R. Also, we’ll
be using decibels everywhere, so we can just add
the power terms together to get overall system
power.
For the receiver, a signal is present at the an-

tenna of lets say -110dBm at 50 Ohms. First, the
signal flows through the T/R switch, the receiver
signal switch, and the bandpass filter, which at-
tenuates the signal by 6.2 dB, bringing it down
to -116.2dBm. Next, the LNA is applied. The
LNA provides 15 dB of gain, bringing the signal
back up to -101.2dBm, while only increasing the
noise by 0.6 dB.
The next sections of the receiver chain are fo-

cused around the transceiver chip. A 1:1 trans-
former balun and matching network brings the
impedance up to 300 Ohms to be matched to the
mixer. Its after this mixer stage that one of three
possible bandpass filters can be selected: 1MHz,
100kHz, or 30kHz. The selected filter bandwidth
plays an important role on the final Signal to
Noise ratio as seen after the quadrature demod-
ulator. This is because the narrower the IF filter,
the less noise power that makes it through to the
ADC.
Now comes an important step which I did not

include in the Bravo design - there is an opera-
tional amplifier between the quadrature demodu-
lator and analog to digital converter. I didn’t see
the purpose at first, but now I know the goal of
the Op Amp is to increase the signal power. For
example, if the input impedance of the OpAmp
is 100kOhm, and the output impedance is 50
Ohm, and the voltage gain is set to 1x (or 0dB),
there is actually a power gain of 33dB due to
the impedance transformation through the volt-
age follower.
Overall, the receiver into the computer has a

computed Noise Figure of 6dB and has sensitivity
down to -110dBm, while consuming less than one
Watt.
For the transmitter, the output of the Dig-

151

ital to Analog converter is 1 mA into a 400
Ohm resistor, or around -4dBm. There is an
LC based lumped element filter followed by an
OpAmp that conditions the signal leading into
the transceiver chip. The image-reject up con-
verter has a characteristic impedance of 200
Ohms, and on the way out a 4:1 balun is used
to match the signal back to 50 Ohms at -10dBm.
The signal attenuates 5dB as it goes through the
bandpass filter bank. Next, two amplifier gain
stages are applied to raise the signal up 15 and
then 20 dB, resulting in a final signal strength of
20dBm, or 100mW at the antenna jack.

3 Software

3.1 User Interface

The user interface is your smartphone or tablet.
My original dream was to have the smartphone
interface be inside of the device, but it doesn’t
make sense yet to integrate it all. Step by step
we can get there, but it’s too complex for Charlie.
Your device can be plugged into the USB OTG
port and charged with the on-board 5V regula-
tor, so they are good companions.

Android/iOS can be interfaced via USB OTG
or WiFi/Bluetooth if you attach the right add-on
to the Whitebox. Since I’ve started this project,
a number of high quality Applications have been
ported and implemented. AprsDroid [6] is a
nice interface to APRS. Sound card support is
available today, but the Bluetooth TNC or TCP
modes should be possible to interface with di-
rectly given some hacking.

FLDigi [7] was ported recently and can be sup-
ported out of the box. This adds a lot of modes
including MFSK, BPSK, PSK, OLIVIA, THOR,
DOMINOEX, and MT63. All of these modes are
supported at various standard baud rates.

There’s no reason to not see the rest of the pop-
ular digital modes, like JT65 [8] ported. There’s
hope of getting FreeDV [9] and other digital voice
modes via the Digital Voice Server [10]. I would
really like to see CHIRP [11] ported to Android

with some kind of universal USB programmer.
Whitebox support would be neat, too.
There’s lots of fun projects for smartphones,

and when we do end up with the touch screen
inside of a Whitebox, all of it will work natively.
So if these kinds of projects interest you, go for
it!

3.2 Internal Software Stack

From the top of the software stack, the device
looks like a web server over a network connection.
Bruce K6BP has been contributing to the project
with the Algoram websocket server (checked into
the main codebase[12]. He ported websockets
and cJSON to the embedded platform. There’s a
full responsive UI for controlling the transceiver,
as well as a web service API. The JavaScript sup-
ports the WebAudio API and you can control
the transceiver right from Chrome on Android
devices.
Available options for the receiver include a

checkbox to turn on/off the LNA; 0dB - 48dB of
attenuation in 6dB increments; a button to run
the receiver calibration. The transmitter is sup-
ported with a checkbox to turn on/off the Power
Amplifier, and a button to run the transmitter
calibration. Both transmit and receive can select
the appropriate bandpass filter. There are visual
indicators for the transceiver temperature, input
voltage, received RSSI, and PLL lock status.
The transceiver is controlled by the white-

box library. This provides the verbs and nouns
needed to control the transceiver. Things like
‘whitebox tx’ starts a transmission, and ‘white-
box write’ writes data out to the transmitter.
Conversely, ‘whitebox rx’ starts a receive, and
‘whitebox read’ reads data out of the receiver.
There’s also data structures and methods to con-
trol modems exposed from the FPGA.
Linux is the common denominator of the in-

ternal Whitebox software stack, and it provides
a plethora of features. We even get the AX.25
stack for free, built right into the OS.
The kernel interfaces with all of the hardware

via drivers, including a custom driver that con-

152

trols the digital signal processing which happens
in the FPGA, which will be discussed at the end.

The driver is zero memory copy, utilizing
mmap to share memory between user space and
the driver. A circular buffer is used to transport
data between memory to peripherals, peripher-
als to memory, and memory to memory with the
Direct Memory Access Controller (DMA).

For connectivity, as mentioned earlier, both
USB OTG and 10/100 Ethernet are available.
USB OTG is probably the most interesting for
expanding the Whitebox. I ported ALSA to the
device, and USB sound cards work great in USB
host mode. So does WiFi, Bluetooth, and GPS
USB dongles.

Linux also includes a Gadget driver interface,
and you can expose the Whitebox to your PC
as a full USB peripheral. The same cable can
support a sound card, a command line shell, a
networking interface, and many more; all at the
same time.

I find the Ethernet to be invaluable while I
develop. You can mount your laptop over NFS to
do quick and iterative development. You can also
flash the operating system over Ethernet. The
FPGA & bootloader can be programmed from
the Ethernet too, though I have not finalized the
utility for this yet.

A bricked device can be recovered via a JTAG
header, though you do need a custom program-
mer for now. BusPirate support is coming, but it
depends on Actel targeting the SVF file format
for the SmartFusion2. . . they say it is “Coming
Soon”.

The FPGA toolchain is free, if you sign up with
Microsemi. It supports a big enough FPGA to
have a few transceivers in one. It (apparently)
works on RHEL Linux, though I usually use it
on Windows. You won’t have to mess with that
stuff though unless you want to play with the
digital signal processing chain.

4 Firmware

Since the Whitebox is a quadrature transceiver
SDR, an important process that happens in the
baseband modem is to convert from software
data, like audio or binary payloads, to a base-
band signal. The baseband signal is a quadra-
ture signal, meant to be sent through a quadra-
ture modulator or captured from a quadrature
demodulator.
To transform between the software and base-

band signals, we need a modem. This modem
sits in the FPGA and consists of two main parts:
the digital signal converter, and the modula-
tors/demodulators. All of them are digital signal
processing flowgraphs.
The digital signal converter moves from a low

sample rate baseband signal, to a high sam-
ple rate baseband signal. The signal is rate-
converted with a CIC filter, and then passes
through a quadrature mixer for fine tuning. The
quadrature mixer is based on complex multiplies
instead of CORDIC, since hardware multipliers
are plentiful on the SmartFusion2. A final FIR
rate converter shapes the signal up to 10MSPS.
The FIR’s coefficients are software controllable.
The reverse flow happens on a receive.
The modem consists of both a modulator for

the transmitter, and a demodulator for the re-
ceiver. I’ve sketched out a modem for AM, FM,
SSB, and FSK, but I have not finalized the de-
sign. The full modem will sit in the smallest Mi-
crosemi FGPA with the digital signal converter
by intelligently sharing the hardwired multiplier
resources.
I gave the Sunday Seminar at the TAPR DCC

2014 on the concept of System on a Chip Field
Programmable Gate Arrays. If you want to cover
the basics, I recommend you check out the four
hours of footage up on YouTube.
Since the FPGA is firmware, and it can be re-

programmed in the field, it’s important to have
the right tools to help build the machinery in
the FPGA. I have spent a lot of energy on using
completely free and open tools to do all of the
design validation.

153

The flow previously has been to use Python to
describe the register transfer logic using a sub-
set of the language and the MyHDL library[13].
This has turned out to be really valuable, as it
makes generating complex Verilog modules much
more streamlined. You can use object oriented
constructs in Python to help efficiently describe
the design.

The easiest way to do simulations is to co-
simulate between Python and an Open Source
verilog simulator, like Icarus Verilog[14]. This
works pretty well, but it is not efficient at all.
As the modem gets more complex, the simula-
tion times grow, and it gets harder and harder
to properly design the modem.

I am now using an additional tool -
Verilator[15]. Verilator takes the final Verilog
code, and converts it into a C++ class. Oper-
ating at the bare metal has given me a full 100x
improvement in speed. Its not an Apples to Ap-
ples comparison, but at the end of the day us-
ing the new tool flow you can much more quickly
and iteratively design new signal processing flow-
graphs in the FPGA.

5 Conclusion

The problem of building a completely self-
contained, portable software defined radio has
been explored. The evolution of the hardware
was documented over the three years of develop-
ment. The details of the hardware for the most
recent prototype were presented. The user inter-
face and developer software stacks were covered.
Finally, the digital signal processing firmware op-
timizations were discussed.

There are many sub-problems to explore as
the hardware, software, and firmware continue
to evolve and mature into a state that we all can
use in the field. If you’re interested in helping
out in any way, contact me, visit my website[16],
and get involved!

References

[1] Testa, Chris KD2BMH. ”Design of a Practi-
cal Handheld Software Radio.” Digital Com-
munications Conference 31 (2012): 122-7.
Print.

[2] Blossom, Eric. ”Exploring GNU Radio”.
Web. 17 Aug. 2015.

[3] Microsemi SmartFusion System-on-
Module (SOM). Web. 17 Aug. 2015.
http://www.emcraft.com/products/133

[4] ”CMX991 - RF Quadrature Transceiver.”
CML Micro Systems. Web. 17 Aug. 2015.

[5] Testa, Chris KD2BMH. ”System on
a Chip - FPGA Programming for
Mixed Signal Systems.” HamRadioNow,
5 Jan. 2015. Web. 17 Aug. 2015.
http://arvideonews.com/hrn/HRN Episode 0

[6] Lucus, Georg DO1GL. ”APRSdroid -
APRS for Android.” Web. 17 Aug. 2015.
https://aprsdroid.org/.

[7] Douyere, John VK2ETA. ”AndFlmsg -
Flmsg with Fldigi Modems on Android
- User’s Manual V Beta-0.4.0.” Index of
/vk2eta. 21 Feb. 2015. Web. 17 Aug. 2015.
http://www.w1hkj.com/vk2eta/.

[8] ”JT65 HF JT65A HF Frequencies Frequency
Information - Digital Mode Software Down-
load.” JT65 HF. HFpack Inc. Web. 17 Aug.
2015. http://hflink.com/jt65/.

[9] ”FreeDV: Digital Voice for HF.” FreeDV.
Web. 17 Aug. 2015. http://freedv.org/.

[10] Perens, Bruce K6BP. ”Algoram Digital
Voice Server.” Algoram Digital Voice Server.
Web. 17 Aug. 2015.

[11] Smith, Dan. ”CHIRP.” Home. Web. 17 Aug.
2015. http://chirp.danplanet.com/.

0185.html.

154

[12] Testa, Chris KD2BMH. ”tes-
taco/whitebox.” Github.com. Web. 17 Aug.
2015. https://github.com/testaco/whitebox

[13] ”MyHDL from Python to Silicon!” MyHDL.
Web. 17 Aug. 2015. http://www.myhdl.org/.

[14] ”Icarus Verilog.” Icarus Verilog
Homepage. Web. 17 Aug. 2015.
http://iverilog.icarus.com/

[15] ”Intro - Verilator.” Veripool.
Web. 17 Aug. 2015.
http://www.veripool.org/wiki/verilator

[16] ”Whitebox Bravo documenta-
tion.” Testa.co. Web. 17 Aug. 2015.
http://radio.testa.co/.

155

Software Defined Radio
Server

“A Radio Server for VHF+ Contesting
And Weak Signal Work”

Phil Theis K3TUF

Digital Communications Conference
October 10, 2015

Initial Plans

Need Band Data
Switch Transverters

6700 is Great Radio (#1 on Sherwood
Engineering List)
No way to change uW bands
Of HF bands for that matter

156

Put an Embedded
Device to work

Select Device
Use Rapid Development Tools

– Python

Get on the air
End of Story ?

Python in Action

157

Elegance and Simplicity

Integrated Development Environment
Built In – Off the Shelf

– Beagle Bone Black
Immediate Bone Script
Python

Ethernet or USB

–

–

–

October 2014

Talk Today

Take you through the Process
See what I learned along the way
Much more that can happen

–

–

–

Transverter Control
Remote Control of 6K radios
Tasks around the Shack

All Via Ethernet

158

Device Choices

Arduino – Rasberry PI – Beagle Bone

Beagle Bone Black

159

GPIO pins

160

Apache Web Server

Port 80
PHP

Available to any Device

The Radio Server

161

162

DAX & SmartCAT

163

Talking to the Radio
Server

SmartSDR
and the use of FlexLib

164

Flex Uses the API

SmartSDR Windows client rests on
FlexLib which rests on the internet API
CAT and DAX also use FlexLib
You can do anything done in SmartSDR
Unprecedented control over a Radio
Server

FlexLib

165

Installing App in Radio

What I am doing

166

API Objectives

How to talk to the API

167

API Commands

Establishing
Connection

168

Slice Exchange

Learning the Protocol

169

My Port 80 Plan

Radio

Ethernet

BBB

PC

PC

Tab

cell

HTML Hyper Text Markup Language
AJAX Asynchronous JavaScript and XML

DOM The Document Object Model is a platform
and language-neutral interface that will allow
programs and scripts to dynamically access
and update the content, structure and style of
documents
Apache / PHP is a server-side scripting
language designed for web development but
also used as a general-purpose programming
language

Technology: Languages

170

C Programming Language for the server
JavaScript is a dynamic computer programming
language. It is most commonly used as part of
Web browsers, whose implementations allow
client-side scripts to interact with the user,
control the browser, communicate
asynchronously, and alter the document
content that is displayed
JSON JavaScript Object Notation
Python for early proof of concept

Technology: Languages

Eclipse Development
Environment

171

Instantaneous Re-Configuration
Liaison to Run

Split Audio
No Loss of Focus
Complete Control of Radio

LED Feedback

Future Tasks

Monitor Temperatures
Control Power Supplies

Turn Antennas / Switch Antennas
Multiple Locations with Distributed Computing
Beacon Monitoring: Propagation Notification
Performance of Beacons: Real Time Status
Dayton Demonstration

172

SatNOGS:
Satellite Networked Open Ground Station

Daniel J. White, Ph.D., AD/0CQ
Valparaiso University

Valparaiso, Indiana

dan.white@valpo.edu

Ioannis Giannelos, Agisilaos Zissimatos, Eleytherios Kosmas,
Dimitrios Papadeas, Pierros Papadeas, Matthaios Papamathaiou,
Nikolaos Roussos, Vasileios Tsiligiannis, Ioannis Charitopoulos

Libre Space Foundation

Athens, Greece

info@satnogs.org

Abstract—The SatNOGS, or Satellite Network Open
Ground Stations, project promotes and supports free and
open space applications. It seeks to solve the problem
of connecting many satellite users/observers to many
ground station operators. Modern open software, web,
and hardware techniques are used in implementing the
Network, Database, Client, and Ground Station sub-
projects. Modularity in all the systems promotes the
dual-use of ground stations by not interfering with local
operation while utilizing the great amount of time a
civilian, non-commercial ground station would otherwise
sit idle.

Index Terms—SatNOGS, CubeSat, software-defined
radio, satellite ground station, open source

I. INTRODUCTION

The SatNOGS [1] project seeks to build a full
stack of open technologies for satellite ground
stations. Civilian satellite launches have been in
a state of change in recent years from the in-
troduction of very small spacecraft which use
standardized launch carriers such as the CubeSat
and PPOD specifications [2]. This has lowered
the bar to satellite ownership and their availability
for educational and amateur projects and citizen
science.

Figure 1 shows that the number of CubeSat-class
satellite launches has increased nearly exponen-
tially since the first in 2000. Previously the domain

of University projects, the last 3 years have seen
a huge increase in non-government or university
launches. These civilian satellites include commer-
cial, like Planet Labs’ Flock-1 satellites [3], non-
profit, like The Planetary Society’s recent LightSail
[4], and amateur, like AMSAT-NA’s upcoming
Fox-1 series [5].

Fig. 1. CubeSat launches per year through 2015-07-17, from
[6]. The “Commercial” category includes non-profit and amateur
satellites.

Each satellite owner typically operates their own
ground station for command and control. The low-

173

earth orbits (LEO) of these spacecraft result in
short time windows when the spacecraft is above
the local horizon for communication. As a result,
owners seek to enlist the help of other suitably
equipped stations for collection of data. The FUN-
cube project is a prime example of a well-organized
effort to receive and collect data from satellite for
educational outreach [7].

Recent advances in low-cost, software-defined
radio (SDR) technology and 3D printing have
put ground station ownership within the reach of
individuals. Largely composed of Amateur Radio
operators, these people receive telemetry and data
from many satellites and provide the information
to the owners and the general public.

Once an individual or organization builds a
ground station, especially if not a commercial
venture, the hardware ends up sitting idle for a
great majority of the time. This capability, when
not being actively used by the local owner, could
be utilized for reception of other satellites. The
SETI@home project is one of the earliest and well-
known projects to make use of idle resources –
compute cycles in that case [8].

What is missing is a civilian infrastructure to
connect these many owners and ground station
operators in a way that is flexible and open. The
ESA’s Global Educational Network for Satellite
Operations (GENSO) [9] was a notable attempt at
such a network aimed at University-class projects
and stations. The fact that the genso.org domain

Fig. 2. Overall view of the SatNOGS concept.

name does not resolve to a live server is a practical
indication of the current state of the project.

Members of Hackerspace.gr [10] in Athens
Greece first proposed SatNOGS as a part of the
2014 International Space Apps Challenge’s “Vir-
tual Ground Station App – Global Crowdsourcing
of CubeSats” Challenge [11]. It was later submitted
as an entry to the 2014 Hackaday Prize, ultimately
winning the grand prize of $196, 418 [12]. The
funds provided seed money to start the Libre Space
Foundation [13], a new non-profit dedicated to
supporting free and open source space and related
projects.

A timely and unique aspect of the project is
its bridging of the Maker / Hacker and the Ama-
teur Radio communities. The 2015 TAPR/AMSAT
Banquet’s speaker, Michael Ossmann AD/0NR
pointed out the many characteristics valued and
shared by these two communities [14]. Ward Silver,
N/0AX’s article for Makezine also does a good job
of drawing these connections [15].

This paper seeks to give an overview of the
SatNOGS project’s major components. Figure 2
gives a high-level overview of the relationship
between users and ground stations. Figure 3 and
the following sections describe the four major sub-
projects: Network, DB, Client, and Ground Station.
The modular approach maximizes use of already
available components at a ground station.

Fig. 3. The four sub-projects are designed with a modular approach
with well-defined interfaces, allowing the ability to relatively easily
interface with existing ground stations.

174

All code and hardware designs for the project
are publicly available under Open Software (AG-
PLv3 and GPLv3) and Open Hardware (CERN
OHLv1.2) licenses [16]. Software documentation
may be found at [17]. Note, screen captures of the
various software components, hardware pictures,
and demonstrations are included in the more ap-
propriate format of the presentation instead of in
the paper.

II. NETWORK

The SatNOGS Network is accessed by users via
a web interface. The user provides details about
observation that they would like to schedule (which
satellite, which band, time-frame, signal encoding,
etc.). From this information, the system calculates
the possible observation windows from the cur-
rently available Ground Stations connected to the
Network having the necessary capabilities. Once
the observer confirms the proposed “Observation
Job” then it is sent as a job to each Ground
Stations’ job queue to be executed. Figure 4 shows
this process as a diagram.

Fig. 4. Diagram of a user scheduling an observation on the network.

Ground Stations collect observation data then
send it back to the Network. Uploaded data is
then made available to the initiating user and any
other third party via the observation’s ID. Modern
web technologies are used on the Network website
to provide timeline and recording visualization

and playback directly in the browser. Download
links are also provided for further offline analysis.
No special software or installation is necessary
for users to interact with the Network. SatNOGS
Network provides an API to allow other applica-
tions and services to query information and, in the
future, automatically schedule observations.

Calculation of candidate times when the target
satellite is visible from an active ground station
is performed with the assistance of the PyEphem
library [18]. The library accepts orbital elements
for the satellite, Ground Station locations, and
the desired time frame. With higher densities of
Ground Stations which can see multiple satellites,
this scheduling can be optimized for many factors.

Because all code and documentation of all parts
of the project are free and publicly available,
anyone is able to contribute to these improve-
ments. Indeed, this open collaboration is one of
the SatNOGS project’s founding principles.

III. DATABASE

The coordination and aggregation provided by
the Network component requires a centralized
source of satellite information such as frequencies
and transmission modes. SatNOGS DB was created
to address the fact that there was no known public
source for this information. In the same spirit of
the rest of the project, the database is open access
and not specific only to the SatNOGS project.

Specifically, DB is a crowd-sourced suggestions
app for transponder data. Satellites are identified
by their NORAD (now USSPACECOM) space
object catalog number and their common name.
Each object has an associated set of transponder
records which indicate frequencies and modulation
formats. SatNOGS Network pulls this information
when calculating possible observations.

Updates are accepted from the public and from
other sources of satellite information with open
APIs. As with the Network, user interaction is
purely web-based and requires no additional soft-
ware besides a capable browser.

IV. CLIENT

SatNOGS Client consists of software running a
computer which controls the ground station hard-
ware. Figure 5 diagrams the internal (modular!)

175

components of the client’s interaction with the
Network.

Fig. 5. Client software components and interactions.

The poller regularly checks the Network API for
observation jobs scheduled for the local Ground
Station. Information contained in each job includes
satellite orbital elements, receiver tuning and de-
modulation parameters, and timing. The PyEphem
[18] library is used to calculate the necessary
antenna pointing and relative velocity for doppler
shift calculation during the pass.

Where possible, existing standard interfaces are
used within the Client. These include using the
daemons rotctl for rotator control and rigctl
for frequency control from HamLib [19]. Any rota-
tor controller which works with rotctl automati-
cally works with the SatNOGS Client by providing
the appropriate IP address and port number the
rotator is listening on.

External programs for starting the receiver driver
are spawned before a scheduled observation and
setup to listen for rotctl commands for doppler
frequency corrections throughout a pass. For use
with the popular Realtek RTL2832U DVB-T don-
gles, the SatNOGS group maintains a version of
rtl-sdr [20] software’s rtl_fm utility which
accepts frequency control via rigctl commands

over a network port [21]. Code for interfacing the
Client with other SDR software is in progress,
including receivers using GNU Radio [22]. Radios
whose baseband signals enter the computer via
soundcard are also planned.

At the end of a pass, demodulated signal data is
placed in a queue for later upload to the Network.
Logs and other reports are also sent back to the
Network by other API actions.

V. GROUND STATION

The SatNOGS Ground Station sub-project en-
compasses the antennas, rotator, and RF path.
Ground station owners execute the Client software
and build or configure the hardware. Plans and
instructions are available for the v2 ground station
and are being finalized for the updated v3 version.
Gears and other parts are 3D printed and the rest
of the hardware for the ground station is easily
available. Besides access to a 3D printer, only hand
tools are required for building either version.

Because the Ground Station rotator’s controller
implements the common EasyComm 2 protocol,
it acts like any other homebrew or commercial
rotator controller using the same format. The Client
software therefore works exactly the same with
the SatNOGS rotator design or with an existing
station’s rotator.

There are designs for every component neces-
sary for a SatNOGS-compatible ground station as
part of the project. Antennas and RF path hardware
may be use SatNOGS, homebrew, or commercial
as the station owner deems appropriate. To help
the goal of easily constructed ground stations, the
project’s designs focus on common hardware, 3D-
printed parts, and tools available in most experi-
menters’ shops of local “maker spaces.”

VI. CONCLUSION

The SatNOGS project aims to provide and pro-
mote free and open source satellite ground stations.
Modern open software and web technologies are
used to coordinate these stations to more fully
utilize the reception capabilities for low earth or-
biting satellites. By using a modular approach to
the ground station segment, the existing stations
of radio amateurs and others may be used with
the network. Avoiding custom, network-specific

mweinberg
Sticky Note

176

software and hardware and ensuring all design
information, code, and received data is and remains
freely available is a core tenet of the project.
Individuals and organizations are encouraged to
partner with the project to help realize these goals.

REFERENCES

[1] SatNOGS — Satellite Networked Open Ground Station.
http://satnogs.org

[2] CubeSat — Wikipedia. https://en.wikipedia.org/wiki/CubeSat
[3] Planet Labs. https://www.planet.com/
[4] The Planetary Society. http://planetary.org/
[5] AMSAT North America — The Radio Amateur Satellite

Corporation. http://www.amsat.org/
[6] M. Swartwout. CubeSat Database. https://sites.google.com/a/

slu.edu/swartwout/home/cubesat-database
[7] The FUNcube Project. http://funcube.org.uk/
[8] SETI@home. U.C. Berkeley. http://setiathome.berkeley.edu/
[9] European Space Agency. Global Educational Network

for Satellite Operations. http://www.esa.int/Education/Global
Educational Network for Satellite Operations

[10] Hackerspace.gr. Athens, Greece. https://www.hackerspace.gr/
[11] https://2014.spaceappschallenge.org/project/satnogs/
[12] Hackaday. The 2014 Hackaday Prize. https://hackaday.io/

prize/2014
[13] Libre Space Foundation. http://docs.satnogs.org/
[14] HamRadioNow. Adventures of a Hacker Turned Ham,

Michael Ossmann. TAPR/AMSAT Banquet, Dayton 2015.
https://www.youtube.com/watch?v=LpSlGKqeZ4I

[15] W. Silver N0AX. A Maker’s Introduction to
Ham Radio. Makezine. http://makezine.com/2015/06/30/
a-makers-introduction-to-ham-radio/

[16] SatNOGS Code and Documentation Repository — GitHub.
https://github.com/satnogs

[17] SatNOGS Documentation. http://docs.satnogs.org/
[18] PyEphem. http://rhodesmill.org/pyephem/
[19] hamlib — Ham Radio Control Libraries. http://sourceforge.

net/projects/hamlib/
[20] Osmocom. rtl-sdr. http://sdr.osmocom.org/trac/wiki/rtl-sdr
[21] SatNOGS. rtl-sdr — rtl fm with rigctl. https://github.com/

satnogs/rtl-sdr
[22] GNU Radio. http://gnuradio.org/

ARRL andTAPR
DIGITAL
COMMUNICATIONS
CONFERENCE

34th

October 9-11, 2015
Chicago, Illinois

ISBN: 978-1-62595-040-6

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

