
201

The Effects of Authentication on AX.25 Packet
Radio Data Transmission Time

Paul D. Wiedemeier, Ph.D., KE5LKY
Assistant Professor of Computer Science
The University of Louisiana at Monroe
Computer Science and Computer Information Systems Department
College of Business Administration
700 University Avenue, Monroe, Louisiana 71209
318-342-1856 (Work) or 318-396-1101 (Fax)
wiedemeier@ulm.edu, wiedemeierp@gmail.com, or KE5LKY@arrl.net

Abstract

This paper quantifies the time required to transmit 4 Kilobyte (KB), 8 KB, and 16 KB text files over a
2-meter AX.25 packet radio network using Gnu Privacy Guard (GPG), Secure Socket Layer and
Transport Layer Security (SSL/TLS), and Internet Protocol Security (IPsec) authentication software.
Our results show that less time is required to transmit data using GPG authentication than either
SSL/TLS authentication or IPsec authentication. The discussion contained in this paper will benefit
those amateur radio operators who provide data communication for organizations that have signed a
Memorandum of Understanding with the American Radio Relay League, such as the American Red
Cross and the Salvation Army.

Key Words

AX.25, Packet Radio, Authentication Software, Gnu Privacy Guard, Secure Socket Layer, Transport
Layer Security, Internet Protocol Security, Call Sign Spoofing, Message, Data, Transmission Time

Introduction

Within an AX.25 packet radio network, call sign “spoofing” is a trivial action because an unscrupulous
individual can easily configure their AX.25 software to transmit messages using any United States
Federal Communication Commission (FCC) call sign. Amateur radio operators who receive a
“spoofed” message are often unable to determine whether (1) the message was actually transmitted by
the individual associated with the call sign and/or (2) the received message was the one actually
transmitted. A solution to this problem is to use authentication software. With respect to amateur radio,
the FCC Part 97.219 rule requires that stations “authenticate the identity of the station from which it
accepts communications on behalf of the system” (USFCC, 2009).

In 2004, the American Radio Relay League’s High-Speed Multimedia & Networking Workgroup
published a report requesting “… the support of the ARRL Board of Directors for development and
filing of a ‘Notice of Proposed Rulemaking’ permitting the use of encryption and strong security
protocols on domestic transmissions above 50 MHz” (Toth, 2004). Specifically, the authors’ claimed
that “… licensees in the Amateur Radio Service need to be free to utilize ... industry-standard security

202

and authentication tools to protect the integrity of their stations”. These views are shared by
(Champa, 2004) and (Rotolo, 2006).

We, too, advocate the use of authentication software when transmitting messages over AX.25 packet
radio networks. As such, this paper explores the use of Gnu Privacy Guard (GnuPG or GPG), Secure
Socket Layer and Transport Layer Security (SSL/TLS), and Internet Protocol Security (IPsec)
authentication software when transmitting messages (i.e. data). Specifically, we wish to quantify the
time required to transmit data using these three authentication software compared to unauthenticated
data transmissions.

Figure 1: The logical hardware configuration of our AX.25 packet radio stations dcrld0 and dcrld1.

For this research, authentication refers to the ability of an individual or station to determine whether (1)
the sender of a received message is who they assert they are and/or (2) the message received is what was
transmitted (Stallings, 2007). To adhere to the FCC Part 97.113 rule, messages were not, at any time
during the transmission, encrypted or “encoded for the purpose of obscuring their meaning” (USFCC,
2009). While GPG, SSL/TLS, and IPsec, by default, provide data encryption and authentication, we
only used authentication when transmitting messages.

Table 1: Specific software used to conduct our research.

Software Associated Website or RFC
Apache Web Server http://www.apache.org/

cURL http://curl.haxx.se/
UNIX time command http://www.kernel.org/doc/man-

pages/online/pages/man1/time.1.html
Gnu Privacy Guard http://www.gnupg.org/

OpenSSL http://www.openssl.org/
Secure Socket Layer/Transport Layer Security http://datatracker.ietf.org/doc/rfc5246/

Internet Protocol Security http://datatracker.ietf.org/doc/rfc4301/
Wireshark http://www.wireshark.org/

TNC

Tx/Rx

PC TNC

Tx/Rx

PC

dcrld0.dcrl.ulm.edu (44.128.2.110) dcrld1.dcrl.ulm.edu (44.128.2.111)

Bob Alice

145.010 MHz

203

Materials

To conduct our research, we constructed an AX.25 packet radio network from a pair of Kenwood
TM-271 2-meter transceivers, two Kantronics KPC-3+ 1200 bits per second terminal node controllers, a
Diamond X30A antenna, and a Diamond X50A antenna. To transmit data, we used two Dell OptiPlex
GX270 personal computers (PC) running Fedora Linux, core 8, which we named dcrld1.dcrl.ulm.edu
(dcrld1) and dcrld0.dcrl.ulm.edu (dcrld0). Figure 1 shows the logical hardware configuration of our
AX.25 packet radio network. For a thorough discussion of how we configured our computers,
transceivers, and terminal node controllers, we refer the reader to (Wiedemeier, 2009 & 2008).

Table 1 lists the software we used to conduct our research. Our software choices were driven by five
requirements. First, we wanted to investigate how application layer, transport layer, and network layer
authentication software influence data transmissions over AX.25 packet radio networks. See Figure 2.
Second, we required the use of data transmission server software (e.g. FTP server or web server) that
would allow us to evaluate each authentication software independently. In this way, we could determine
each authentication software’s overall effect on data transmission time.

Figure 2: An “authentication enabled” generic data communication protocol stack.

Third, we required the use of command line oriented client software that would allow us to retrieve data
from the data transmission server software we chose to use. Additionally, we required that the client
software display the elapsed time associated with a data transmission. Fourth, we required the use of
network protocol analyzer software to inspect every packet transmitted between the client and server.
Last, the software we used must be open source and must be installed on the Fedora Linux operating
system.

The data transmission server software we chose was Apache web server, version 2.2.9. Our decision to
use an Apache web server was due to two unique features associated with the software. First, adding
authentication support to an Apache web server is well documented and manageable for a
knowledgeable UNIX system administrator. Second, the client software we chose can direct a secure
Apache web server to use a specific encryption and authentication cipher when transmitting data.

We installed and configured a standard Apache web server, as well as a secure Apache web server, on
PC dcrld1. We next created three text files of size 4 Kilobyte (KB), 8 KB, and 16 KB, which we named

TCP & SSL/TLS

AX.25

145.010 MHz

IP IPsec

TCP

HTTP HTTPS

GPG

TCP

HTTP

IPNetwork Layer

Data Link Layer

Physical Layer

Application Layer

Transport Layer

204

text4KB.txt, text8KB.txt, and text16KB.txt respectively. These three files were copied to the directory
/var/www/html on PC dcrld1. We refer the reader to (Wiedemeier, 2009 & 2008) for a discussion about
the contents of these three files.

We used the cURL client software on PC dcrld0 to retrieve the text files text4KB.txt, text8KB.txt, and
text16KB.txt from the standard and secure Apache web servers on PC dcrld1.dcrl. We chose cURL
because it is able to send and receive data using many data communication protocols, including HTTP,
HTTPS, FTP, FTPS, SCP, SFTP, TFTP, DICT, TELNET, LDAP, or FILE (Stenberg, 2010). We also
chose cURL because it has a --ciphers command line argument that can instruct a secure web server to
use specific authentication and encryption ciphers during data transmission.

While cURL will display the elapsed time in seconds associated with each file transmission, we also
used the ubiquitous UNIX time command to verify that the elapsed transmission time returned by cURL
matched that returned by the UNIX time command. For each file transmitted, the date of transmission
and elapsed transmission time were recorded in a Microsoft Excel spreadsheet.

The application layer authentication software we chose to use was Gnu Privacy Guard (GnuPG or GPG).

 “GnuPG stands for GNU Privacy Guard and is GNU's tool for secure communication and data
storage. It can be used to encrypt data and to create digital signatures. It includes an advanced
key management facility and is compliant with the proposed OpenPGP Internet standard as
described in RFC 2440. As such, it is aimed to be compatible with PGP from PGP Corp. and
other OpenPGP tools” (Ellmenreich & Koch, 2010).

The transport layer authentication software we chose to use was Transport Layer Security (TLS). “TLS
and its predecessor, Secure Socket Layer (SSL), are cryptographic protocols that allow client/server
applications to communicate across the Internet in a way designed to prevent eavesdropping and
message tampering”. (Dierks & Rescorla, 2008). SSL/TLS is often used by organizations to secure data
transmitted between web browsers/clients and a web server.

The network layer authentication software we chose to use was Internet Protocol (IP) Security. Internet
Protocol Security (IPsec) is a protocol suite for providing secure IP communications by authenticating
and encrypting each IP packet transmitted. IPsec also includes protocols for establishing authentication
between users and hosts at the beginning of a communication session and negotiation of the
cryptographic keys to be used. (Kent, 2005).

As discussed in the Introduction, the FCC Part 97.113 rule prohibits the transmission of encrypted data
over amateur frequencies. Because SSL/TLS and IPsec, by default, encrypt and authenticate transmitted
data, we configured both software to use RSA authentication and NULL encryption. We then used the
wireshark network protocol analyzer to ensure that the software performed only authentication during
data transmission.

Methods

The activities associated with installing, configuring, and transmitting data using the cURL, the UNIX
time, and the GPG, SSL/TLS, and IPsec authentication software are discussed in the following
subsections. To illustrate how we installed, configured, and used the authentication and associated

205

software, let us assume that two individuals, Alice and Bob, wish to transmit data over an AX.25 packet
radio network. From Figure 1, we see that Alice and Bob own and manage PCs dcrld1 and dcrld0
respectively.

Apache Web Server

To install the standard Apache web server, as root on dcrld1, Alice executes the command
yum groupinstall “Web Server”. This command installs several software packages, including httpd,
httpd manual, https modules, mod_ssl, Apache modules, PHP, perl, python. To configure a secure
Apache web server Alice completes the activities discussed in the SSL/TLS Authentication subsection
below.

Wireshark Network Protocol Analyzer Configuration

To ensure that all data transmissions are conducted without encryption, Bob uses the wireshark network
protocol analyzer to capture and view all packets transmitted between dcrld0 and dcrld1. To use
wireshark, he completes the following activities.

1. As root on dcrld0, Bob executes the command yum install wireshark to install the network
protocol analyzer software.

2. Using his account on dcrld0, Bob executes the command wireshark to start the network protocol
analyzer.

3. After the wireshark program starts, he selects the “capture” tab and then selects “interfaces” from
the dropdown menu.

4. On the “Capture Interfaces” pop-up window, he clicks the “option” button associated with the
“any” interface.

5. On the “Capture Options” pop-up window, he enters the text
“net 44.128.2.0 mask 255.255.255.0” in the “Capture Filter” textbox.

6. Before Bob initiates a file request, he selects the “capture” tab and then selects “start” from the
dropdown menu to begin capturing packets.

7. He can now select and view any or all packets transmitted between dcrld0 and dcrld1.
8. To end the packet capture, Bob selects the “capture” tab and then selects “stop” from the

dropdown menu.

No (i.e. “None”) Authentication

To transmit data without authentication (i.e. “None”), together, Alice and Bob complete the following
activities.

1. As root on dcrld1, Alice places the text files text4KB.txt, text8KB.txt, and text16KB.txt in the
directory /var/www/html.

2. Using his account on dcrld0, Bob executes the command
time curl http://dcrld1.cs.ulm.edu/text4KB.txt > /tmp/text4KB.txt.

3. The httpd daemon on dcrld1.cs.ulm.edu receives the request and sends file text4KB.txt to the
cURL program executed by Bob.

4. Bob records the transmission time, in minutes and seconds, returned by the UNIX time command
in a Microsoft Excel spreadsheet. See Table A1 in the Appendix.

206

5. To obtain twenty transmission of the file text4KB.txt, Bob completes activities 2 through 4
nineteen additional times.

6. Bob computes an average transmission time from the twenty transmission times collected and
records this data in the Microsoft Excel spreadsheet. See Table A1 in the Appendix.

7. Bob completes activities 2 through 6 for files text8KB.txt and text16KB.txt. See Table A1 in the
Appendix.

GPG Authentication

To transmit data using GPG authentication, together, Alice and Bob complete the following activities.
Notice in activity 7, Alice and Bob must securely exchange electronic copies of their GPG public keys.

1. As root on dcrld1, Alice executes the command yum install gpg to install the GPG software on

dcrld1.
2. As root on dcrld0, Bob executes the command yum install gpg to install the GPG software on

dcrld0.
3. Using her account on dcrld1, Alice creates a GPG public and private key pair by executing the

command gpg --gen-key.
4. Alice creates a text file that contains her GPG public key by executing the command

gpg --export --armor “Alice” > Alice_GPG_public_key.txt.
5. Using his account on dcrld0, Bob creates a GPG public and private key pair by executing the

command gpg --gen-key.
6. Bob creates a text file that contains his GPG public key by executing the command

gpg --export --armor “Bob” > Bob_GPG_public_key.txt.
7. In a secure manner, Alice and Bob exchange electronic copies of the text files that contain their

respective GPG public keys.
8. Using her account on dcrld1, Alice places Bob’s GPG public key on her GPG key ring by

executing the command gpg --import Bob_GPG_public_key.txt.
9. Alice determines the fingerprint of Bob’s GPG public key by executing the command

gpg --list-keys --fingerprint “Bob”.
10. Alice signs Bob’s GPG public key by executing the command

gpg --sign-key [Bob’s GPG public key fingerprint here]. In doing so, Alice now “trusts” all files
signed by Bob’s GPG private key.

11. Using his account on dcrld0, Bob places Alice’s GPG public key on his GPG key ring by
executing the command gpg --import Alice_GPG_public_key.txt.

12. Bob determines the fingerprint of Alice’s GPG public key by executing the command
gpg --list-keys --fingerprint “Alice”.

13. Bob signs Alice’s GPG public key by executing the command
gpg --sign-key [Alice’s GPG public key fingerprint here]. In doing so, Bob now “trusts” all files
signed by Alice’s GPG private key.

14. Using her account on dcrld1, Alice “clearsigns” the text file text4KB.txt using her GPG private
key by executing the command gpg --clearsign text4KB.txt. This command creates a new file
named text4KB.txt.asc. An example of a GPG clearsigned file is shown in Figure 3. The
unencrypted data portion of the file shown in Figure 3 has been truncated due to space
constraints.

15. As root on dcrld1, Alice renames the file text4KB.txt.asc as text4KB.txt.dcrld1.asc and places it
in the directory /var/www/html.

207

16. Using his account on dcrld0, Bob executes the command
time curl http://dcrld1.cs.ulm.edu/text4KB.txt.dcrld1.asc > /tmp/text4KB.txt.dcrld1.asc.

17. The httpd daemon on dcrld1.cs.ulm.edu receives the request and sends file
text4KB.txt.dcrld1.asc to the cURL program executed by Bob.

18. Bob records the transmission time, in minutes and seconds, returned by the UNIX time command
in a Microsoft Excel spreadsheet. See Table A2 in the Appendix.

19. To verify that the file text4KB.txt.dcrld1.asc was (1) signed by Alice’s GPG public key and (2)
that the contents of the file were not changed or modified during transmission, Bob executes the
command gpg --verify /tmp/text4KB.txt.dcrld1.asc.

20. To obtain twenty transmission of the file text4KB.txt.dcrld1.asc, Alice and Bob complete
activities 14 through 19 nineteen additional times.

21. Bob computes an average transmission time from the twenty transmission times collected and
records this data in the Microsoft Excel spreadsheet. See Table A2 in the Appendix.

22. Alice and Bob complete activities 14 through 21 for files text8KB.txt.dcrld1.asc and
text16KB.txt.dcrld1.asc. See Table A2 in the Appendix.

Figure 3: An example GPG “clearsigned” file.

SSL/TLS Authentication

To transmit data using SSL/TLS authentication, together, Alice and Bob complete the following
activities. Notice in activity 1.g, Alice must find a secure method to provide Bob with an electronic
copy of dcrld1’s SSL/TLS certificate. Notice, also, in activities 1.r, 2.f, and 3.a, Alice and Bob are
requesting files from dcrld1’s secure Apache web server.

-----BEGIN PGP SIGNED MESSAGE-----
Hash: SHA1

012345678901234567890123456789012345678901234567890 …
012345678901234567890123456789012345678901234567890 …
 :
 :
012345678901234567890123456789012345678901234567890 …
012345678901234567890123456789012345678901234567890 …

-----BEGIN PGP SIGNATURE-----: GnuPG v1.4.7 (GNU/Linux)

iQIVAwUBS2pEdvTJW9l7crFSAQJePw//YG97nwpNKXS9NPgpZQblq3/ualwDlrN2
Ss9fPkV78SRtXUBzNF6GVf07B3K2tlAF7K8YKU38c9vlTE95UgAE4UBaqM5n4Hal
SWfFEb04TAw4/6tuwVgNZxSIb7jvAPolRXAjJgHN5HEi6Fus/mjs/rsU8E4atbuZ
HufYrDoolFSu8rDDZ8sFvdATqlwghPvQJwCfQn+CkLpKFg32A+mATcmlZ8gfPo2h
HI+cig8vxaztcjOEC42Scq/erm80Hde5u4+0MUp1D6UuhGPRpTXw82+GHE7W3RzL
jzFTvWwbpsFiY79wvZN7DcbJs/gRDMtpSaKm5q7MmVB121ixifXfIZXLR6cGX/6/
HZ46Xln0/7o60I83yWC91XP0CUqbaJs9BrVYDNAPWbK2vhh2F2kYMEzrF1nUUv42
D0QE0yqj6/0VmJIrGjiAxgKPw9cfGAdxM9S3FoxiLJYhBdqZhcT0Nhfb04zbod5s
aZn/aK+OZmd8vqVvyD07ufwm16ttq8MeKiHtwm09tY7Zyp9bwew92VneAIPEFLQ5
oGBc431KX1SXYqEQB1IBOwUmIMBOuDXm6vSRpOmYhPkfYPDjfISj69f0Wg85k5Ez
NtzlBz0ldDNwLtZxrk3ETdq0lvLsZYhVNYXHGF0oJzObiuiPZiyPFvp4RUT9dc6L
gmijwab0u8E=
=/y0r
-----END PGP SIGNATURE-----

Unencrypted
Data

GPG
Signature

208

1. As root on dcrld1, Alice completes the following activities.

a. She executes the command cd /etc/pki/tls/certs to enter this directory.
b. She executes the command make dcrld1.key to generate a RSA private key.

i. Executing the command openssl genrsa -des3 1024 > dcrld1.key accomplishes
the same task.

c. She executes the command make dcrld1.csr to create a certificate signing request (CSR)
for an SSL/TLS certificate.

i. Executing the command openssl req -utf8 -new -key dcrld1.key -out dcrld1.csr
accomplishes the same task.

d. She executes the command make dcrld1.crt to generate a self-signed SSL/TLS certificate.
i. Executing the command

openssl req -utf8 -new -key dcrld1.key -x509 -days 365 -out dcrld1.crt -set_serial 0
accomplishes the same task.

e. To move the private key to the appropriate directory, Alice executes the command
mv dcrlc1.key ../private/dcrld1.key.

f. She executes the command openssl x509 -text -in dcrld1.crt > dcrld1.pem to create a
privacy enhanced mail (PEM) formatted file of the dcrld1.crt self-signed SSL certificate.
PEM files are used to exchange SSL/TLS certificates between computers.

g. In a secure manner, Alice provides Bob with an electronic copy of the file dcrld1.pem.
h. She executes the command hostname dcrld1 to set the hostname of her computer.
i. She executes the command domainname dcrl.ulm.edu to set the domainname of her

computer.
j. To add network support for dcrld0, she executes the command

echo “44.128.2.110 dcrld0.dcrl.ulm.edu dcrld0” >> /etc/hosts.
k. To add network support for dcrld1, she executes the command

echo “44.128.2.111 dcrld1.dcrl.ulm.edu dcrld1” >> /etc/hosts.
l. She executes the command vi /etc/httpd/conf/httpd.conf to edit this file.

i. She modifies the line “ServerName” so that it reads
“ServerName dcrld1.dcrld.ulm.edu”.

ii. She modifies the line “ServerAdmin” so that it reads
“ServerAdmin [Alice’s email address]”.

m. She executes the command vi /etc/httpd/conf.d/ssl.conf to edit this file.
i. She modifies the line “ServerName” so that it reads

“ServerName dcrld1.dcrld.ulm.edu”.
ii. She modifies the line “SSLCertificateFile” so that it reads

“SSLCertificateFile /etc/pki/tls/certs/dcrld1.crt”.
iii. She modifies the line “SSLCertificateKeyFile” so that it reads

“SSLCertificateKeyFile /etc/pki/tls/private/dcrld1.key”.
iv. She modifies the line “SSLCipherSuite” and adds “:NULL” at end to add support

for NULL encryption message transmission.
n. She executes the command cp ca-bundle.crt ca-bundle_ORIG.crt to retain a copy of

dcrld1’s original certificate bundle file.
o. She executes the command cat dcrld1.crt >> ca-bundle.crt to append dcrld1’s certificate

to dcrld1’s certificate bundle file.
p. She executes the command service httpd stop to stop the httpd daemon.
q. She executes the command service httpd start to start the httpd daemon.

209

r. She executes the command curl --verbose https://dcrld1.dcrld.ulm.edu to test dcrld1’s
secure Apache web server.

s. She places the text files text4KB.txt, text8KB.txt, and text16KB.txt in the directory
/var/www/html.

2. As root on dcrld0, Bob completes the following activities.

a. He executes the command cd /etc/pki/tls/certs to enter this directory.
b. He executes the command cp ca-bundle.crt ca-bundle_ORIG.crt to retain a copy of the

dcrld0’s original certificate bundle file.
c. He executes the command cat dcrld1.pem >> ca-bundle.crt to append dcrld1’s certificate

to dcrld0’s certificate bundle file, where dcrld1.pem is the PEM file created by Alice.
d. To add network support for dcrld0, he executes the command

echo “44.128.2.110 dcrld0.dcrl.ulm.edu dcrld0” >> /etc/hosts.
e. To add network support for dcrld1, he executes the command

echo “44.128.2.111 dcrld1.dcrl.ulm.edu dcrld1” >> /etc/hosts.
f. He executes the command curl --verbose https://dcrld1.dcrld.ulm.edu to test dcrld1’s

secure Apache web server.

3. Using his account on dcrld0, Bob completes the following activities.

a. Bob executes the command time curl --ciphers rsa_null_md5
https://dcrld1.dcrl.ulm.edu/text4KB.txt > /tmp/text4KB.txt. The cURL --ciphers
rsa_null_md5 command line argument instructs the secure web server on dcrld1 to use
RSA authentication and NULL encryption during transmission.

b. The httpd daemon on dcrld1.cs.ulm.edu receives the request and sends file text4KB.txt to
the cURL program executed by Bob.

c. Bob records the transmission time, in minutes and seconds, returned by the UNIX time
command in a Microsoft Excel spreadsheet. See Table A3 in the Appendix.

d. To obtain twenty transmission of the file text4KB.txt, Bob completes activities 3.a, 3.b,
and 3.c nineteen additional times.

e. Bob computes an average transmission time from the twenty transmission times collected
and records this data in the Microsoft Excel spreadsheet. See Table A3 in the Appendix.

f. Bob completes activities 3.a through 3.e for files text8KB.txt and text16KB.txt. See
Table A3 in the Appendix.

IPsec Authentication

To transmit data using IPsec authentication, together, Alice and Bob complete the following activities.
Notice, unlike GPG and SSL/TLS authentication, Alice and Bob do not exchange keys or certificates
when using IPsec authentication.

1. As root on dcrld1, Alice completes the following activities.

a. She executes the command system-config-network to start the Network Configuration

tool and then completes the following activities after the program starts.
i. She selects the “IPsec” tab and then click the “New” button to create new IPsec

configuration

210

ii. She enters “packet” as the “Nickname”, but does not check the
“Activate the connection when the computer starts” check box.

iii. She selects the “Host to Host encryption” radio button.
iv. She selects “Auto encryption mode selection via IKA (raccoon)” radio button.
i. She enters “44.128.2.110”, which is dcrld0’s IP address, as the

“Remote IP address”.
v. She enters “SOMEAUTHPHRASE” as the “Authentication key”. We suggest

using the authentication phrase used to create your GPG public and private keys.
vi. She applies the IPsec configurations.

b. She executes the command vi /etc/raccoon/raccoon.conf to edit this file.
i. In the sainfo {} block, she modifies the “encryption_algorithm” line to read

“encryption_algorithm null_enc;”.
c. She starts the IPsec “packet” interface by executing the command ifup packet.

i. Alice can stop the IPsec “packet” interface by executing the command
ifdown packet.

d. Alice places the text files text4KB.txt, text8KB.txt, and text16KB.txt in the directory
/var/www/html.

2. As root on dcrld0, Bob completes the same activates completed by Alice shown above, except

1.d. With respect to activity 1.a.i. above, he would enter “44.128.2.111” as dcrld1’s “Remote IP
address”.

3. Using his account on dcrld0, Bob completes the following activities.

a. Bob executes the command
time curl http://dcrld1.cs.ulm.edu/text4KB.txt > /tmp/text4KB.txt.

b. The httpd daemon on dcrld1.cs.ulm.edu receives the request and sends file text4KB.txt to
the cURL program executed by Bob.

c. Bob records the transmission time, in minutes and seconds, returned by the UNIX time
command in a Microsoft Excel spreadsheet. See Table A4 in the Appendix.

d. To obtain twenty transmission of the file text4KB.txt, Bob completes activities 3.a, 3.b,
and 3.c nineteen additional times.

e. Bob computes an average transmission time from the twenty transmission times collected
and records this data in the Microsoft Excel spreadsheet. See Table A4 in the Appendix.

f. Bob completes activities 3.a through 3.e for files text8KB.txt and text16KB.txt. See
Table A4 in the Appendix.

Results

The time required to transmit the 4 KB, 8 KB, and 16 KB text files between our two AX.25 packet radio
stations using the GPG, SSL/TLS, and IPsec authentication software is shown in Figure 4 and displayed
as “long dash”, “square dot”, and “round dot” lines respectively. The “solid” “None” line represents
data transmission time without authentication. The data used to create the plots shown in Figure 4 are
shown in Tables A1, A2, A3, and A4 in the Appendix. A plot of no (i.e. “None”) authentication is
shown in Figure A1 in the Appendix and plots of GPG, SSL/TLS, and IPsec authentication versus no
(i.e. “None”) authentication are shown in Figures A2, A3, and A4 in the Appendix.

211

With respect to Figure 4, the data show that more time is required to transmit the text files using GPG,
SSL/TLS, and IPsec authentication compared to no (i.e. “None”) authentication. However, two
“features” should be noted. First, less time is required to transmit the 4 KB, 8 KB, and 16 KB text files
using GPG authentication versus SSL/TLS authentication. Second, more time is required to transmit the
4 KB text file using IPsec authentication compared to GPG authentication, but less time is required to
transmits the same file using IPsec authentication compared to SSL/TLS authentication. However, more
time is required to transmit the 8 KB and 16 KB text files using IPsec authentication compared to both
GPG authentication and SSL/TLS authentication. We discuss both “features” in the following
paragraphs.

Figure 4: GPG, SSL/TLS, IPsec, and No (i.e. “None”) Authentication Data Transmission Time.

As shown in Figure 4, and Figures A2 and A3 in the Appendix, the plots of GPG authentication and
SSL/TLS authentication transmission times mirror that of no (i.e. “None”) authentication transmission
times. The reason for this “mirroring” is based on the amount of data transmitted by each authentication
software. For example, when transmitting a 4 KB file using no (i.e. “None”) authentication, the amount
of data transmitted is 4 KB plus the overhead data transmitted by the Apache web server. The amount
of data transmitted using GPG authentication is the 4 KB file size plus the size in bytes of the GPG
clearsigned authentication header plus the overhead associated with the Apache web server. The
amount of data transmitted using SSL/TLS authentication is 4 KB file size plus the SSL/TLS
authentication header plus the overhead associated with the Apache web server. Overall, we see that the
amount of authentication in bytes required by GPG and SSL/TLS to transmit the 4 KB, 8 KB, and 16
KB text files remains constant as the file size increases. This result is illustrated in Figure 5, where the
percentage of GPG an SSL/TLS authentication decreases as file size increases. For text files larger than
16 KB, we expect the percentage of GPG and SSL/TLS authentication, relative to file size, to decrease
because the size of GPG and SSL/TLS authentication headers remains fixed.

212

Figure 5: GPG, SSL/TLS, and IPsec Authentication Data Transmission Time as a Percentage of No (i.e.

“None”) Authentication Data Transmission Time.

As shown in Figure 4 and Figure A4 in the Appendix, the time required by IPsec authentication to
transmit 4 KB, 8 KB, and 16 KB text files does not mirror that required by no (i.e. “None”)
authentication. This is because IPsec authenticates each packet transmitted. Specifically, as file size
increases, the number of packets transmitted increases, which increases the amount of IPsec
authentication transmitted. As shown in Figure 5, the percentage of authentication overhead required by
IPsec, compared to no (i.e. “None”) authentication is approximately 17% of the file size transmitted.

Conclusion

From our results, we advocate using GPG authentication when transmitting messages over AX.25
packet radio networks because it requires less transmission time compared to SSL/TLS and IPsec
authentication. However, what the data in our figures and tables do not show is the time required to
install and configure the authentication software, and the knowledge required by the individual
responsible for configuring the Apache web server. The author hopes that the activities discussed in the
Methods section of this paper, which Alice and Bob must complete to authenticate data, provide the
reader with a general “feel” for the work and knowledge required to use the GPG, SSL/TLS, and IPsec
authenticate software.

Acknowledgements

The author graciously thanks Allison M.D. Wiedemeier, Ph.D., for reading the first draft of this paper.
The author’s research is supported through funds provided by The University of Louisiana at Monroe
(ULM) College of Business Administration and the ULM Digital Communication Research Laboratory.

213

References

Champa, John (K8OCL). (2004). HSMM and Information Security. CQ VHF Magazine, Fall, pp.
53-56.

Dierks, T. & Rescorla, Eric. (2008, August). The Transport Layer Security Protocol, Version 1.2.
Request for Comments 5246. Retrieved July 26, 2010 from http://datatracker.ietf.org/doc/rfc5246/.

Ellmenreich, Nils & Koch, Werner. (2010). Gnu Privacy Guard Frequently Asked Questions.
Retrieved July 26, 2010 from http://www.gnupg.org/documentation/faqs.html.

Kent, Stephen. (2005, December). IP Authentication Header. Request for Comments 4302. Retrieved
July 26, 2010 from http://datatracker.ietf.org/doc/rfc4302/.

Rotolo, Don (N2IRZ). (2006, August). Data Encryption is Legal! CQ Magazine, vol. 62, no. 8, pp.
50-52.

Stallings, William. (2007). Data and Computer Communication, pp. 713. Upper Saddle River, NJ:
Pearson Prentice Hall Publishers.

Stenberg, Daniel. (2010). cURL man Page. Retrieved July 26, 2010 from
http://curl.haxx.se/docs/manpage.html.

Toth, Paul (NA4AR). (2004, June). Security & Data Integrity on a Modern Amateur Radio Network.
American Radio Relay League. High Speed Multimedia & Networking Working Group.

United States Federal Communication Commission (USFCC). (2009). Part 97 – Amateur Radio
Service. Retrieved July 26, 2010 from http://www.gpo.gov/fdsys/pkg/CFR-2009-title47-vol5/pdf/CFR-
2009-title47-vol5-part97.pdf.

Wiedemeier, Paul (KE5LKY). (2009, September). “Comparing 2-Meter Packet Radio Data Unicasts
and Multicasts”. Proceedings of the 28th ARRL and TAPR Digital Communications Conference, pp.
114-129.

Wiedemeier, Paul (KE5LKY). (2008, November). Using Udpcast to IP Multicast Data over Packet
Radio Networks. American Radio Relay League QEX Magazine, November/December, issue 251, pp.
43-49.

Biography
Dr. Paul D. Wiedemeier is an Assistant Professor of Computer Science at The University of Louisiana at
Monroe and the principle investigator of the ULM Digital Communication Research Laboratory.
Dr. Wiedemeier obtained a Ph.D. in Computer Engineering and Computer Science from the University
of Missouri – Columbia, a M.S. in Computer Science from Michigan Technological University, and a
B.S. in Computer Science from Drake University. He is a member of the Institute of Electrical and
Electronics Engineers, the Association for Computing Machinery, the American Radio Relay League,
the Tucson Amateur Packet Radio Corporation, the Consortium for Computing Sciences in Colleges,
and the Louisiana Academy of Sciences. Dr. Wiedemeier currently holds a General Amateur Radio
License (KE5LKY) issued by the United States of America Federal Communications Commission.

214

Appendix

Table A1: No (i.e. “None”) Authentication Data Transmission Time.

4 KB File Size 8 KB File Size 16 KB File Size

Minutes Seconds
Total

Seconds Minutes Seconds
Total

Seconds Minutes Seconds
Total

Seconds
2 43.9 163.9 4 43.5 283.5 7 49.7 469.7
2 27.2 147.2 4 29.9 269.9 7 56.1 476.1
2 22.4 142.4 4 25.1 265.1 7 39.7 459.7
2 25.3 145.3 3 58.3 238.3 7 39.1 459.1
2 32.5 152.5 4 48.2 288.2 8 36.0 516.0
2 32.6 152.6 4 30.5 270.5 7 30.0 450.0
2 29.4 149.4 4 44.1 284.1 7 35.2 455.2
2 32.5 152.5 4 4.0 244.0 7 38.8 458.8
2 41.2 161.2 4 8.1 248.1 8 46.8 526.8
2 1.8 121.8 4 7.8 247.8 7 57.6 477.6
1 59.5 119.5 3 49.2 229.2 7 21.4 441.4
2 11.5 131.5 4 29.1 269.1 8 2.5 482.5
1 57.9 117.9 4 3.2 243.2 8 6.9 486.9
2 16.0 136.0 4 23.5 263.5 9 4.8 544.8
2 21.2 141.2 3 55.1 235.1 7 21.0 441.0
2 7.2 127.2 4 4.3 244.3 8 4.8 484.8
2 21.5 141.5 3 52.0 232.0 7 38.7 458.7
2 9.2 129.2 3 49.7 229.7 7 47.8 467.8
2 3.1 123.1 3 59.4 239.4 8 6.7 486.7
2 16.0 136.0 4 42.7 282.7 7 45.4 465.4

 Avg. = 2 19.6 139.6 Avg. = 4 15.4 255.4 Avg. = 7 55.5 475.5

Figure A1: No (i.e. “None”) Authentication Data Transmission Time.

215

Table A2: GPG Authentication Data Transmission Time.

4 KB File Size 8 KB File Size 16 KB File Size

Minutes Seconds
Total

Seconds Minutes Seconds
Total

Seconds Minutes Seconds
Total

Seconds
2 45.3 165.3 4 17.1 257.1 8 20.8 500.8
3 1.5 181.5 5 17.7 317.7 8 27.3 507.3
2 45.8 165.8 4 50.8 290.8 8 3.3 483.3
2 50.6 170.6 4 28.2 268.2 8 10.2 490.2
3 2.7 182.7 4 25.8 265.8 8 26.8 506.8
2 36.2 156.2 4 21.0 261.0 8 33.6 513.6
2 34.5 154.5 4 56.3 296.3 8 0.3 480.3
2 39.9 159.9 4 35.8 275.8 8 22.1 502.1
2 42.0 162.0 4 29.5 269.5 8 33.7 513.7
2 48.1 168.1 4 23.1 263.1 8 19.1 499.1
2 27.5 147.5 4 29.5 269.5 8 35.6 515.6
2 33.8 153.8 4 36.5 276.5 9 59.3 599.3
2 33.0 153.0 4 20.3 260.3 8 21.6 501.6
2 26.3 146.3 4 26.5 266.5 9 14.6 554.6
2 35.1 155.1 4 24.0 264.0 8 57.4 537.4
2 36.0 156.0 4 12.4 252.4 7 48.9 468.9
2 20.5 140.5 4 43.6 283.6 8 4.8 484.8
2 36.4 156.4 4 29.0 269.0 8 0.9 480.9
2 36.0 156.0 4 58.9 298.9 8 0.3 480.3
2 41.9 161.9 4 11.7 251.7 8 16.9 496.9

Avg. = 2 39.6 159.6 Avg. = 4 32.9 272.9 Avg. = 8 25.9 505.9

Figure A2: GPG versus No (i.e. “None”) Authentication Data Transmission Time.

216

Table A3: SSL/TLS Authentication Data Transmission Time.

4 KB File Size 8 KB File Size 16 KB File Size

Minutes Seconds
Total

Seconds Minutes Seconds
Total

Seconds Minutes Seconds
Total

Seconds
3 7.229 187.229 4 41.161 281.161 8 5.448 485.448
3 11.592 191.592 4 45.074 285.074 8 28.201 508.201
3 8.138 188.138 4 56.729 296.729 8 21.342 501.342
2 52.178 172.178 4 49.687 289.687 8 26.049 506.049
3 1.261 181.261 4 42.905 282.905 8 32.086 512.086
3 3.439 183.439 4 32.558 272.558 9 59.710 599.710
2 55.176 175.176 5 3.247 303.247 8 38.896 518.896
2 55.939 175.939 5 10.347 310.347 8 16.157 496.157
2 55.944 175.944 4 37.428 277.428 8 42.894 522.894
2 47.833 167.833 4 47.589 287.589 8 32.428 512.428
2 59.637 179.637 4 56.182 296.182 8 32.558 512.558
2 54.729 174.729 4 47.547 287.547 8 28.249 508.249
2 47.330 167.330 5 13.141 313.141 8 29.373 509.373
3 6.193 186.193 4 44.040 284.040 8 34.060 514.060
2 54.642 174.642 4 47.437 287.437 8 35.762 515.762
3 12.722 192.722 4 32.580 272.580 8 25.431 505.431
2 45.137 165.137 4 42.396 282.396 8 20.305 500.305
3 1.252 181.252 4 47.479 287.479 8 13.329 493.329
2 41.856 161.856 4 32.290 272.290 8 58.979 538.979
3 1.826 181.826 4 50.553 290.553 8 21.028 501.028

Avg. = 2 58.202 178.202 Avg. = 4 48.018 288.018 Avg. = 8 33.114 513.114

Figure A3: SSL/TLS versus No (i.e. “None”) Authentication Data Transmission Time.

217

Table A4: IPsec Authentication Data Transmission Time.

4 KB File Size 8 KB File Size 16 KB File Size

Minutes Seconds
Total

Seconds Minutes Seconds
Total

Seconds Minutes Seconds
Total

Seconds
2 37.7 157.7 4 52.4 292.4 9 15.758 555.758
2 51.5 171.5 4 44.0 284.0 9 31.873 571.873
2 48.6 168.6 5 7.6 307.6 9 28.879 568.879
2 31.7 151.7 5 9.9 309.9 9 28.415 568.415
3 14.0 194.0 4 46.2 286.2 9 18.422 558.422
2 56.9 176.9 4 50.8 290.8 9 33.273 573.273
2 24.6 144.6 4 51.9 291.9 9 27.613 567.613
2 49.5 169.5 5 44.2 344.2 9 25.129 565.129
2 47.1 167.1 4 52.7 292.7 9 18.001 558.001
2 51.6 171.6 5 3.3 303.3 9 16.655 556.655
2 42.0 162.0 4 55.7 295.7 9 11.184 551.184
2 55.5 175.5 5 19.4 319.4 9 8.883 548.883
2 51.9 171.9 4 55.7 295.7 8 57.12 537.12
2 27.9 147.9 5 5.8 305.8 9 29.929 569.929
2 32.8 152.8 4 56.7 296.7 9 19.04 559.04
2 52.5 172.5 4 43.1 283.1 9 18.607 558.607
2 26.2 146.2 5 3.8 303.8 9 4.183 544.183
2 28.7 148.7 4 55.6 295.6 9 26.092 566.092
2 46.3 166.3 4 49.3 289.3 9 18.792 558.792
2 40.6 160.6 4 57.4 297.4 9 12.338 552.338

Avg. = 2 43.9 163.9 Avg. = 4 59.3 299.3 Avg. = 9 19.5093 559.5093

Figure A4: IPsec versus No (i.e. “None”) Authentication Data Transmission Time.

