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TPSK31:  Getting the Trellis Coded Modulation Advantage 

A Tutorial on Information Theory, Coding, and Us with an homage to 

Claude Shannon and Ungerboeck’s genius applied to PSK31. 

By: Bob McGwier, N4HY 
 

As just about everyone who is alive and awake and not suffering from some awful brain disease knows,

PSK31 is an extremely popular mode for doing keyboard to keyboard communications.  Introduced in 

the late 1990’s (1,2) it quickly swept the amateur radio world. 

Its major characteristics are a 31.25 baud differentially encoded PSK signal with keyboard characters 

encoded into an compression algorithm called varicode by Peter (1) before being modulated with the 

differentially encoded psk.  This differential psk has some serious advantages on HF, including 

insensitivity to sideband selection, no need for a training sequence to allowing break in decoding to 

occur and myriad others discussed elsewhere.  The slow data rate allows it to use our awful HF 

channels on 40 and 20 meters effectively and it is more than fast enough to have a good conversation 

just as we have always done with RTTY.  Further, it is very spectrally efficient.  If we are going to 

improve on it, we better not mess with these characteristics.  We will not. 

Peter will be the first person to tell you that he is not a trained communications theorist, engineer, or 

coding expert.  Yet he is one of the great native intelligences in all of amateur radio.  His inspirational 

muse (lend me some!) is one of the best and his perspiration coefficient are among the highest ever 

measured in amateur radio (this means he is smart and works hard, an extremely good combination). 

We will give you a tour of some of this theory, show you how Peter used one piece of it well and then 

made an attempt to aid his new mode with what in this author’s opinion was an abortive effort to help 

the mode achieve a lower error rate and an attempt to show us another way. 

Shannon’s Source Coding Theorem: 
 

Claude Shannon’s name is spoken with reverence by almost every serious communications 

theoretician or engineer.  He completely revolutionized the field of communications and information 

theory with a few years of truly inspired work.  He is called the father of information theory and that is 

not too strong a thing to call him. 

Since we only care about digital communications systems in this paper we will limit our discussion of 

the information theory to information theory on discrete random variables.   Furthermore, since we are 

talking about digital systems, we might as well think of our random variables as coin tosses with 0,1 as 

the outputs or encodings of the information, heads, tails.   
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Suppose we flip our coin and see what we can figure out.   How much information is being transmitted 

by the flipping of this coin?  Let’s flip this thing 1,000,000 times (my arm is breaking just thinking about 

it).   Let’s write the sequence of results (my arm is really hurting now).   

 Let suppose I want to call Frank Brickle, AB2KT, who is staying in Vancouver right now and give him 

the results.  How many bits will it take me to encode the results?  THIS IS THE ESSENCE OF THE 

SOURCE CODING THEOREM and the right question.  Most great advances in science come from 

asking the right question. This is no exception.  I have information I want to give to Frank.  How much 

information MUST I transfer to get the story across perfectly without loss of information on a perfect 

channel?   

First, let us suppose it is a completely fair coin.  The two outcomes happen each with probability ½.  

The only way for me to transfer the information perfectly to Frank is to tell him 0 or 1 (T or H).  I must 

send the entire sequence of results and it will take 1,000,000 bits.  This is going to be tedious.  But 

what do you expect of noise like signals?  The only way for me to tell you what the noise signal is in 

most systems, is to give you every sample.  OTHERWISE I COULD EFFECTIVELY SUBTRACT THE 

NOISE and I would not have as noisy a channel!  This is what we do with tone like interferers; we find a

way to clobber them with filters or other predictive processing. 

But now let us scrape our trusty coin about and really take a hammer to the thing.  We dent it so badly, 

that heads occurs ¼ of the time and tails therefore occurs ¾ of the time on average.  The entire 

sequence of flips can be sent in digital form in a little over 810,000 bits.   This says to us that each flip 

of the coin, now that it is biased, has less information per flip than it did when it was fair.  How do we do

this?  Let’s go further so the answer is more intuitive.  Let’s just go completely nuts.  We will take a ten 

pound sledge to that poor coin.  (I can see Frank shuddering in Vancouver right now!).   Now the thing 

gives me a head only one time in 1000 on average.    We expect very few heads and many tails, so 

does it make sense to transmit every flip?  NO WAY.  

Start flipping, at the first head, we tell Frank (head after 1N  flips).  Keep flipping.  At the next heads, tell

Frank the distance to the next flip is 2N flips later.  This is a much more efficient way of conveying the 

information than  T,T,T,T,T,T,T,T,T,T,T,T,T,….., H (whew at last),T,T,T,T, …,H (wow, another one!).  

This is well know to image encoders as a variant of RLE or run length encoding. 

This is an example of an efficient coding.  We were able to do it because the source contained very 

little information per flip.  This sounds like the Digital Radio group on Yahoo tm right?  Lots of stuff 

coming but little information?  (Just kidding). 

This is one of the ingenuous things Peter Martinez gave us in PSK31.  English does not emit letters at 

the same rate.  The small letter e occurs most frequently in typed English and therefore contains little 

information.  Martinez, in his Varicode, did exactly this.  He said when I see an e, I will send 11.  On the

other hand, how often do you send a NUL or a DLE (teletype  or ascii characters)?  NOT VERY 

OFTEN.  So in those cases, he emitted his longest possible codewords, 1010101011 and 1011110111 

respectively.  Peter has distilled the information for randomness and found an efficient coding for the 

source emissions.  Just like the unfair coin, it would be DUMB to send the 7 or 8 bit representation for e

and the same ascii representation for NUL !  Martinez does not do this dumb thing.  An additional 

feature he built into his compression scheme was self synchronization aides. All code words begin and 

end with a 1 and at a minimum, two zeros are transmitted between characters, and no varicode 
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codeword has two zero’s in a row in it.  He cleverly combined several features into one device with this 

scheme. 

How can we measure this stuff with mathematics so we can have some guide posts on what is 

possible for my communications system?  We will go back and consider the coin flip.  Suppose the 

probability of a head is hp .  Since tails is the only other outcome we will consider (standing on edge 

only counts in the Twilight Zone),  the probability of a tail is 1 – probability of a head,  1t hp p . We 

already know that for large differences in these probabilities, the information content is low.  How can 

we capture this?  We capture it through the mathematical device called Entropy.   We will measure the

information in bits.   The self information in each trial or flip X of the coin X is I X where 

 2 2( ) log (1/ ( )) log ( ( )).I X p X p X  (1.1) 

The self information, measured in bits, in the flip X is the negative log base 2 of ( )p X .  The “bits” here 

come for the fact that we using logarithm base 2.  The information entropy of the random variable X is 

the expected value of the self information or 

 2 2( ) log log .h h t tH X E I X p p p p  (1.2) 

So in the fair coin trial, 
1

2
t hp p  and the formula gives us that each coin flip gives 

 2 2 2

1 1 1 1 1
log log log 1.

2 2 2 2 2
 (1.3) 

That is, 1 bit of information in each trial just as we said.  In the ridiculously unfair case, (or the 

utterances in the Digital Radio group) we get 

 2 2( ) 0.001 log 0.001 0.999 log 0.999 .H X  (1.4) 

We get 0.0114 bits because the outcome is so biased.   So in our 1,000,000 flip trials, I need to 

communicate about 11500 bits to Frank.  What does this have to do with our communications system, 

Varicode, PSK31, and Peter?  We wanted to give you a practical demonstration of WHY redundant 

communication channels can be effectively compressed. Because mathematically, they don’t have as 

many bits of information in them as their alphabet would seem to indicate if the letters of the alphabet 

were issued at random.   Peter noticed this about English and designed a compression code. 
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Figure 1: Information Entropy of Coin Flipping 

 

So now we can state a fact.  The highest information entropy for an alphabet of size N occurs when?  

When all members of the alphabet are issued with equal probability, 1
N

.   In that case the information 

entropy is 

 2 2

1

1
( ) log 1/ log 1/ .

N

H X N N
N

 (1.5) 

This is the maximum information entropy for an alphabet of size N.  One of the most famous plots in 

mathematics, not just information theory, is the plot of the coin toss entropy as a function of the 

probability of a head is given in Figure 1. 

So again, we return to our problem.  What does your intuition tell you about transmitting information 

over a channel?  Is it smart to use the entire sequence of heads and tails in the case of the very biased 

coin?  Of course it is not smart.  It is smarter to compress the information as much as possible and then

use the “extra time” to send the data in such a way that it is more immune to the degradations 

omnipresent in communications channels.  What does Shannon tell us?  In one of the most celebrated 

results of science, in the 1940’s Shannon studied this problem and told us a great fact which we will 

state in terms of coin flips and then generally. 
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Shannon’s Source Coding Theorem (version 1): If the coin flips have probably of a head hp  then we

can compress without loss of information, the sequence of M flips into ( )hMH p where we have used 

hH p as shorthand for the full entropy.  

 

WHAT DID WE JUST DO?  We compressed the redundant information with this shorthand ( )hMH p !  

So in my transmission to Frank I need to send  ( using (1.4)  ) 

 2 21000000* 0.001 log 0.001 0.999 log 0.999 bits (1.6) 

In other words,  11408 bits is the LEAST number of bits I can send and hope to get it through without 

loss of information. Now let us state this theorem a little more generally 

Shannon’s Source Coding Theorem : N  i.i.d. random variables each with entropy H(X) can be 

compressed into more than NH(X) bits with negligible risk of information loss, as N tends to infinity; but 

conversely, if they are compressed into fewer than NH(X) bits it is virtually certain that information will 

be lost 

So we have shown that we CAN compress redundant information out of the data emitted from our 

source.  We argue that we should.  It is the responsible thing to do.  Peter has done this to the best of 

his ability with Varicode.  The complete table is in Appendix A. 

 

PSK31: 
 

Now that we have crushed the data to be sent into a smaller package, what do we do with it?  It is really

pretty straightforward.  Between each varicode character, we send at least two zeros.  No varicode 

character has two zeros in a row.  Each varicode begins and ends with a 1 so the first 1 after a run of 

zeros is assumed to be the beginning of a varicode symbol.  This it is trivial to break in synchronize.  If 

we want to send a zero, we change the phase of our carrier by 180 degrees or  radians. If we send a 

1, we make no phase change.  So a long string of zero data means we are in idle and we change 

phase every symbol time. 

 

It became immediately apparent how much more spectrally efficient this mode was in relation to baudot 

RTTY.  It required much less power and bandwidth to conduct keyboard to keyboard chat in 

comparison to RTTY. It has given birth to an entire generation of sound card based digital programs.  In

other words, it is a marvel and is still immensely popular. 

In an attempt to introduce a new wrinkle into the system and try to improve the performance on some 

channels, Peter introduced QPSK31.  It encodes the data stream with a convolutional code and then 

transmits the encoded data two bits at a time using QPSK.   There is the belief in much of the writing 

about QPSK31 that it is 3 dB worse than PSK31 because half the power is split into two channels and 
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that this can be made up with the convolutional code.   There is a failure to recognize that in addition to 

sending ½ of the power per channel we have another impact.  We are not sending them on separate 

channels.   The distance between points of the same voltage or power in the original BPSK we can say

is 2.  The distance between nearest neighbors IF all points still have the same power as before is now 

sqrt(2)  in the qpsk constellation rather than 2.  So this is another loss of 10log 2  or -1.5 dB than 

is accounted for by the power computation alone.  So the loss we need to make up with the coder is not

3 dB, but 4.5 dB.  The constraint length 5 convolutional code used is not up to the challenge. 

Shannon’s Channel Coding Theorem: 
 

Claude Shannon told us to compress the redundancy from the data.  We can do this is a lossless way if 

we use Shannon’s formula for the entropy to find the information rate and then design an appropriate 

code.   Now that we have compressed the data, we want to know, can we send it in an efficient manner 

on the channel we have in front of us on our radios? 

There are two forms of this theorem that information theory students learn.  One is the Noisy Channel 

Coding Theorem and the other is the Shannon-Hartley Channel Coding Theorem.  The Shannon-

Hartley is an application of the Noisy Channel version to the archetypal channel we consider in digital 

communications.  For completeness, we will give the Noisy Channel Theorem and then use only the 

Shannon-Hartley (5, 6, 7, and 8).  

 

 

 

 

The transmitter sends the symbols X into the channel and the receiver gets Y.   Consider X to be a 

stream of data and Y to be the received version of this stream of data.  In all of our systems, we are 

sending a small finite alphabet.  In all the systems we care about now, we are receiving noisy digitized 

samples. Thus both X and Y are discrete random variables.  Since we know something about X 

immediately, we know how much information the transmitter is putting into the channel.  It is H X .   If 

we are to find the problem of understanding what the channel is doing to us, we need to make some 

FALSE but simplifying assumptions.  We will assume that the channel is doing nothing but adding 

Gaussian noise. We will assume the channel does not remember in any way, what went before.  The 

extent to which these assumptions apply to our problems, tells us the extent to which the theory is 

directly applicable.  But under this assumption,  we know a lot about Y, the received symbols.  The 

important thing for us to know is what is Y if we assume we know what X is.  This is a complete defined 

mathematical thing because we have assumed that all the channel has done is add noise.  Thus, if we 

know X, we know the probability distribution of Y given that X has occurred.  That is we know 

| |Y XP y x , which is that we will see y given that x is emitted if we see the random sequence Y knowing

the sequence X  has been emitted.   But since the channel has known distribution, we actually can 

Transmitter 

Sends X 

Channel      

(noisy) 

Receiver 

Receives Y 
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easily derive the joint distribution of y and x, | ,Y XP x y  from the known quantity XP x  which is called 

the prior and using Baye’s rule.   The prior here means  we assume we know the probability that x is 

emitted by the transmitter.  Thus we get 

 , |, , .X Y Y X XP x y P x y P x  (1.7) 

Under our assumption of discrete random variables,  let us consider the all important quantity 

 2

( , )
( ; ) ( , ) log .

( ) ( )y Y x X

p x y
I X Y p x y

p x p y
 (1.8) 

This quantity is known as the mutual information between the discrete random variables X and Y (in 

bits).   Define  the conditional entropy as  

 2( | ) ( ) ( | ) log ( | ).
x X y Y

H Y X p x p y x p y x  (1.9) 

Then we get several forms for ( ; )I X Y : 

 

( ; ) ( ) ( | )

( ) ( | )

( ) ( ) ( , ).

I X Y H X H X Y

H Y H Y X

H X H Y H X Y

 (1.10) 

Where ( , )H X Y  is defined in exactly the same way as before except we use the joint probability 

functions for x and y. 

We are ready to state the all important theorem and leave it about as quickly as we arrived after we set 

the plate.  The channel in our diagram and in our statements is a thing independent mathematically 

from the transmitter and its symbols.   This means it is a fundamental physical thing and a limiting facto

on anything, any system, that wants to use it to communicate.  So, if we want to know how much we 

can cram through this channel,  we need to try ALL possible communications systems to find the best. 

Before you cry over the infinite possibilities,   relief will immediately follow. 

Noisy Channel Coding Theorem:  The capacity of a channel  such as the ones we have described is 

given by 

 ( ; ).sup
Xp

C I X Y  (1.11) 

If 0 , for any rate R C , there exists an encoding and decoding that can be used to ensure that the

probability of block error is less than  for a sufficiently long code.  Also, at a rate greater than the 

channel capacity, the block error rate goes to 1.0 as the block length goes to infinity.  Here sup means 

the largest value over all possible transmitter types, data sources, and source codings. 
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This is one of those painful mathematical theorems.  It is difficult enough to get beyond the symbols, 

the careful use of language, and the concepts. But the you find that it does not tell you one thing about 

how to do it.  It only says “it exists”. 

The Shannon-Hartley is probably more useful to most amateurs.  It gives us the capacity of the channel

in familiar terms.  There are no mutual information (apparent), no strange conditional probabilities, only 

“stuff” we have an intuitive understanding for.  Basically it says that if you know the bandwidth of your 

system, and the signal to noise ratio, you know the capacity.  Furthermore, it says that you can turn the 

wick up louder and louder on a fixed bandwidth and increase the capacity. 

Shannon-Hartley Channel Coding Theorem:    

 2log 1 .SC B
N

 (1.12) 

C is the capacity, B is the bandwidth in Hz and S/N is the unitless power ratio (not in dB but the actual 

powers in watts ratio).  Sometimes this ratio is called the carrier to noise ratio in digital communications 

systems.   I know you like this form better.  But it was derived from the Shannon Noisy Channel Coding 

Theorem to explain, in information theoretic terms, Hartley’s 1928 result.  It was the “Eddington eclipse 

proof of the general theory of relativity” for Shannon since Hartley’s result was “known to be right”.  For 

completeness, we must say that our channels are not white; they are at best colored noise channels.  

But, the Shannon-Hartley result holds in a nice way. 

 
2

1

2

( )
log 1 .

( )

f

f

S f
C df

N f
 (1.13) 

This just says that the signal and the noise are functions of frequency and the capacity C is determined 

by this formula over the interval 1 2,f f . 

In the PSK31 case, the channel is 60 Hz wide (at its -30 dB points) and we want the capacity to be 

greater than 31.25 bits per second.   So we need  

 2log 1 .
R S

NB
 (1.14) 

Since R is 31.25 bps and B is 60 Hz, this means S/N > .435 or 
0

bE
N

>  0.8325 or in dB, we must be 

greater than -0.78 dB.  I think most would agree we are not close.  On the other hand, Peter’s design 

criteria were very strict about having the keyboard to keyboard character of the operation not be 

radically different from RTTY.  He did not want forever feeling latency in the decoding.  The penalty is 

increase SNR is required.  But, the question for us is, are we doing a good job? If not, can we preserve 

the character and do better? 

The QPSK mode is not going to cut it.  Though it is done using soft decision decoding, it is still not 

enough to overcome the -4.5 dB penalty.  But what if we encode in a different way and make use of a 

lot that has been learned in the last twenty years.  
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The problem with encoding the data, and then modulating, is that irrespective of the soft decision, it is 

still a code based on the probability of the Hamming metric of the digital paths given the channel.  We 

can do better.  Many will tell you that a code such as the one Peter used, where neither of the bits 

transmitted in a QPSK symbol is the actual data is better than the one where the data is sent in the 

clear with a coding bit accompanying.  Ungerboeck showed us how to make this false (3,4). 

The BPSK constellation is show in the next figure. 

 

The points 0 and 1 are on opposite sides of the Q axis and are 2 units apart.   Now let us consider the 

QPSK constellation. 

 

We could also choose something similar to this (mathematically equivalent).  The important feature to 

notice is that adjacent points encode only patterns that different in at most one bit.  So if, on a noisy 
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channel, you confuse one for a neighbor, you are at most one bit in error.   Mathematically speaking,  

Peter’s implementation is equivalent.  As in the BPSK mode,  11 and 00 are on opposite sides and 00 

means phase reversal and 11 means no phase shift.  Just rotate this pretty picture 45 degrees to the 

right and all will be right with the world. 

Trellis Coded Modulation: 
 

Let us consider a different way of doing business.    Ungerboeck said let us consider a way to live 

within our band limited channel, not increase the baud rate, but get actual coding gain.  The famous set 

of ideas starts with the  block diagram below.   We take k data bits we wish to transmit and one of them 

goes uncoded to the constellation mapper.   The convolutional encoder takes k-1 bits  and produces k 

bits.  Thus, k+1 bits feed the constellation mapper.  Care is used in selecting how to amp the bits to 

constellation points.   In one of our test cases,  where we are taking binary data that was sent to the 

PSK31 binary modulator, that same data is now sent to the constellation mapper.  But in addition to the  

 

 

 

 

 

 

 

incoming data bit, we add a bit generated by the convolutional coder.  This convolutional code can be 

quite weak, and in our case to keep it familiar to Ungerboeck fans, it can be a systematic code.    In our 

case, we are going to have a weak uncoded bit and a coded version of it.   The coded version will 

choose between vertical and horizontal members of the constellation and the uncoded, weaker data, 

will only be allowed to choose between members of the vertical or horizontal legs.  Now the intuition 

becomes clearer.   The weakest data is forced to choose between points that are farthest apart and the 

encoded data is used to choose between error prone close data. 

In this practical trellis coded modulator,  we will get a real 3 dB coding gain over the uncoded BPSK 

data.  Practical implementations should be straightforward and easily added to several existing pieces 

of code in place of the conventional coded QPSK.   The things to notice is that all zero data will produce 

the same kinds of revs as before by choice of mapping.  It should fit easily into existing systems.  Frank 

Brickle, AB2KT, who has been kind enough to let me pick on him in this paper, and I will be testing on 

the air with several other volunteers soon.  Following this successful experiment, we will use a 

nonsystematic code and slightly more painful decoding but the increase in coding gain when you do not 

have these “parallel” paths from systematic codes is a function of the code length only. QRX for lift off. 

 

 

 

Convolutional 

Encoder rate 

k/(k+1) 

 

 

Constellation Mapper picks 

points from M=2^(k+1) 

 

Modulator 
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Appendix A: Varicode 

The Varicode Character Set  

NUL 1010101011 DLE 1011110111

SOH 1011011011 DCI 1011110101 

STX 1011101101 DC2 1110101101

ETX 1101110111 DC3 1110101111

EOT 1011101011 DC4 1101011011

ENQ 1101011111 NAK 1101101011

ACK 1011101111 SYN 1101101101

BEL 1011111101 ETB 1101010111

BS 1011111111 CAN 1101111011

HT 11101111 EM 1101111101 

LF 11101 SUB 1110110111

VT 1101101111 ESC 1101010101

FF 1011011101 FS 1101011101 

CR 11111 GS 1110111011 

SO 1101110101 RS 1011111011 

SI 1110101011 US 1101111111 

SP 1 C 10101101 

! 111111111 D 10110101 

" 101011111 E 1110111 

# 111110101 F 11011011 

$ 111011011 G 11111101 

% 1011010101 H 101010101 

& 1010111011 I 1111111 

101111111 J 111111101 

( 11111011 K 101111101 

) 11110111 L 11010111 

* 101101111 M 10111011 

+ 111011111 N 11011101 

, 1110101 O 10101011 

- 110101 P 11010101 

. 1010111 Q 111011101 

/ 110101111 R 10101111 

0 10110111 S 1101111 

1 10111101 T 1101101 

2 11101101 U 101010111 

3 11111111 V 110110101 

 W 101011101 

4 101110111 X 101011101 

5 101011011 Y 101110101 
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6 101101011 Z 101111011 

7 110101101 [ 1010101101 

8 110101011 \ 111110111 

9 110110111 ] 111101111 

: 11110101 ^ 111111011 

; 110111101 _ 1010111111 

< 111101101 . 101101101 

= 1010101 / 1011011111 

> 111010111 a 1011 

? 1010101111 b 1011111 

@ 1010111101 c 101111 

A 1111101 d 101101 

B 11101011 e 11 

f 111101 s 10111 

g 1011011 t 101 

h 101011 u 110111 

i 1101 v 1111011 

j 111101011 w 1101011 

k 10111111 x 11011111 

l 11011 y 1011101 

m 111011 z 111010101 

n 1111 { 1010110111 

o 111 | 110111011 

p 1111111 } 1010110101 

q 110111111 ~ 1011010111 

r 10101 DEL 1110110101
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