
SCAMP (Sound Card Amateur Message Protocol)

By Rick Muething, KN6KB (rmuething@cfl.rr.com)

Abstract
Digital modes enjoy increasing popularity and performance thanks to a better understanding of Digital
Signal Processing (DSP) and continual improvement in the performance of modern computers, sound
cards, and operating systems. SCAMP is a new experimental "wide-band" (2 KHz) digital sound card
message protocol suitable for HF. SCAMP leverages the work by Barry Sanderson, KB9VAK and
employs an ARQ "wrapper" around Barry's Redundant Digital File Transfer (RDFT) scheme to provide
the error-free automatic operation necessary for today's modern digital message systems. This paper
documents work in process developing and testing a new sound card mode that promises Pactor-like
performance for HF channel transmission. Key words: RDFT, HDSSTV, Pactor, MT63, PSK-31,
Winlink, DIGTRX, Sound Card Modes, Pipelining.

Background
Hams now can select from a number of software implemented digital modes for monitoring and sending
information using the sound card found in virtually every personal computer. These modes offer not
only lower cost solutions (no modem expense) but also an excellent experimental environmentone of
the cornerstones of our ham radio hobby.

Some modes support a listen or monitor only mode (e.g. We fax reception, FEC broadcast monitoring
etc) essentially replacing the hardware "decoder" with a sophisticated DSP program running on a Pc.
There are also now a number of very popular conversational modes like PSK-31 and MT63 that have
sprung up and serve the keyboarder very well.

However when it comes to the near perfect error-free reception required to automatically forward
messages and binary file attachments used in modern amateur message systems (1) most of these
"conversational" modes fall short in throughput and robustness. The rather strict synchronous Transmit
I Acknowledge timing constraints of Pactor also make it very difficult to implement a reliable Pactor
connection (as opposed to only monitoring) with anything but the very fastest computers or dedicated
DSP processors.

Barry Sanderson presented a paper at the 2001 Dayton Hamvention and released software utilities that
implemented an effective robust transport mechanism initially called HDSSTV for transmitting digital
image files over noisy HF channels (2). Barry's fine work later expanded and renamed RDFT has
sparked other programmers like Roland Zurmely, PY4ZBZ to develop programs like DIGTRX based on
Barry's RDFT technology and software primitives (3).

After experimenting with several alternative approaches (e.g. ARQ wrappers around multi channel
PSK3 1/63 or MT63) and working with DIGTRX it appeared Barry's RDFT modulation scheme and
software primitives could be adapted to reliably forward error-free binary data in automatic and
semiautomatic message systems.

71

FECandARQ
It is important to clarify and understand the two primary mechanisms for achieving error- free digital
data forwarding. First by "error-free" I mean that the probability of an uncorrected error is sufficiently
low (generally less than 10-6

) not to impact the practical use of the system. Any coding or retry scheme
can fail but we can, by proper design and coding, reduce that probability of failure to an acceptably
miniscule level.

FEC stands for Forward Error Correcting and essentially is a coding mechanism that adds redundancy to
the data stream to aid in detecting and hopefully correcting errors. In some modes (e.g. FEC
broadcasting) we can achieve FEC by appending simple parity or sum check bits and redundantly
transmitting (duplicating) the data. These schemes are simple and effective especially for broadcast data
(ARRL bulletins, NAVTEX weather bulletins etc) but achieve robustness at the expense of significant
reduction in the theoretical channel capacity. Without a "back channel" there is no way the FEC sending
station can be sure the receiver received the data error-free or adjust the level of FEC redundancy.

ARQ stands for Automatic Retry reQuest and employs a back channel (from the "receiving" station to
the "sending" station) that acknowledges (ACKs) or negatively acknowledges (NAKs) indicating the
data was received correctly or not. In some cases a full repeat is requested or perhaps just some portion
of the message (or additional error correcting coding) is requested. In a half duplex ARQ system
(typical on HF) the timing can be rigid and synchronous as in Pactor or rather loose and asynchronous as
in packet. All ARQ systems must have a robust mechanism for error detection and most also employ at
least some level of FEC as well to try and correct some errors without retries.

Since ARQ keeps the sending station "aware" of the received message progress it can insure that not
only the message is received "error free" it also allows the sending station to know by acknowledge that
a message (or how much of a message) has been received and processed. Within a typical digital
message system using FEC and ARQ there are also normally higher forwarding protocols used.

Challenges of DSP processing on the PC
One ofthe big challenges in creating an efficient sound card based message protocol is the inherent lag
or delay in sound card processing. Sound cards basically capture digital audio samples (to memory or a
file) in a continuous stream. The PC software must break this stream into groups of samples (usually a
power of two from 1024 to 8192 sample) to process with DSP algorithms to do filtering, demodulation,
and decoding. Some sophisticated decoding algorithms take considerable computational effort and even
with modem high-speed processors this adds significant delay in the ACK or NAK signaling required
for ARQ. For synchronous ARQ systems like Pactor this requires significant peak computing loads that
have to date required dedicated hardware or DSPs. Ifwe accept an asynchronous ARQ system that
allows the receiving end to delay the ACK/NAK we can solve this problem but at the expense of
significantly degrading the precious channel capacity. For SCAMP I looked closely at the typical
computational and timing demands common to popular HF protocols. What I found was that through the
use of parallel threads it was possible to overlap the low computational tasks of waveform capture and
transmission with the high computational loads of decoding and encoding.

Pipelining
To accommodate the delay introduced by the sound card capture, DSP and decoding delays without
degrading the channel throughput I came up with a pipelining scheme and an asynchronous ARQ
protocol. Together these work to reduce the ARQ and sound card processing demands while still

72

providing a way for slower processors to participate but at reduced channel capacity. Pipelining is
possible because of two important characteristics of digital message systems:

I) The sender and receiver are automated so a delay of several seconds in the message due to
the pipeline is not a significant problem as it might be with a "live" keyboard QSO.

2) The typical message consists of many packets or frames allowing messages to be pipelined
with minimal net overhead. The inefficiency of starting and ending the pipeline is less when
there are many packets or frames.

The following figure shows a typical pipelining and Asynchronous ARQ mode used in SCAMP. You
can see the CPU intensive processing functions (encoding and decoding) are done in parallel with the
low intensity transmission and capture tasks. When the sending and receiving CPUs can complete the
processing in less than the actual transmission time this is a transparent and efficient mechanism.
Essentially pipelining levels out the processing "peaks" and this allows us to use modest processors and
operating systems with limited real-time interrupt capability ...ourtypical PC. One requirement of
pipelining is that it does requires the software (and programmer!) to efficiently support multiple parallel
threads... something early DOS and Windows systems could not but today's OS and development
frameworks can do with relative ease.

SCAMP Pipelining
Long Data Packet Timing with all correct reception

: 3 RDFT Blocks (-12 sec) i i :
I" -! jl

[/ii!;III;lll~:tacbti (iliiii ii;,liliIIlI1l4I1tiillM 117Sill17S'iIB17Siii.17S;i;ii;UU17S//17S'III17Sii17Si,~17S••17Siiil17Siil,17Siil~~!::1

11.lilllll~"¢J;~il ~~llc(lj.lil '!IIIIII,:'~III!i.~!

Capture Packet 0 I Capture Packet 0+1 I Capture Packet 0+2 j
Decode Packet 0-1 I , Decode Packet 0 I Decode Packet 0+1 I

rAcK1 IACKI lACK'
-.6sec~ n n+l

Overlaps low Demand Transmit with CPU intensive Encoding on Transmit side
Overlaps low Demand Capture with CPU intensive Decoding on Receive side

RDFT and SCAMP
Barry's RDFT has some very important characteristics that make it well suited for this type of
asynchronous ARQ scheme. RDFT is basically a "batch" process that operates independently on each
captured wave file from the sound card. Barry developed sophisticated math and signal processing
stand-alone utilities that generate or decode sound card wave files. Essentially RDFT provides two DLL
or batch programs (for DOS/Windows or Unix) that perform the complex and CPU intensive encode and
decode functions. The encode function takes a binary file and encodes it (with a selectable degree of
FEC redundancy) to a sound card wave file ... suitable for directly modulating a HF SSB transmitter.
The more CPU intensive decoding utility does the reverse, decoding the captured wave file (with all its
HF channel noise and distortion!) from the sound card and producing the (hopefully error-free) binary
file. RDFT can work effectively on both short and long binary files. RDFT's multi-level FEC Reed
Solomon encoding and sophisticated soft decision decoding make the mechanism robust while still

73

achieving a reasonably high information content vs. bandwidth. The variable level of redundancy (10
70 %) allows adapting the encoding to fit both good and poor radio channels.

An ARQ "wrapper" however must be added to the basic RDFT transport mechanism. This wrapper
breaks the messages to be forwarded into standardized serialized "packets" and implements a back
channel for the required ACK or NAK signaling success or failure during reception. The ARQ
mechanism must also implement a robust mechanism to control the start and stop of the sound card
capture process to "frame" each ofthe packets. In SCAMP I used a very robust .6 second burst of 10
tones to signal packet start, packet stop, ACK and NAK. These tone bursts have a very low correlation
to the data and each other and are very effective even in marginal channels.

The ARQ wrapper also implements two modes to optimize throughput. In the non pipelined short-packet
mode the sending and receiving station asynchronously wait to encode, send, capture, decode and
ACK/NAK short high redundancy blocks (80-260 information bytes). This is used to control the link
and the higher-level forwarding protocol where pipelining would be inefficient due to link turn around
and pipeline startup overhead. In the pipelined mode SCAMP uses "packets" of 3 RDFT blocks
yielding 260-800 information bytes depending on coding. This provides better overall throughput for
messages from 1000 to more than 20,000 bytes.

Example Implementation with Paclink
Developing SCAMP has certainly been a learning and challenging experience. To begin
experimentation I used DIGTRX to become familiar with RDFT. Later I developed a special version of
the WL2K Paclink program (4) written in VB.NET to support the sound card using MS Direct X
utilities. The capability of VB.NET to launch and manage other processes and threads was necessary to
permit overlapping the time-critical threads of playback, capture, start/stop burst correlation, encoding
and decoding. The following screen shows the simple setup required in Paclink to setup and run
SCAMP.

AboutSOH'

Channel Narne: I SolJ/'ldCaJd
Local Calsign: 1---;_IllII'..:----

Ignae
Remote Celsign: I KN6KIl-l r Inbound

PTT Drl rv~Ox-:---3""1 SSID

SoundC.sd

po Enable Inbound Connections

r AutomaticaI1y send an.!' penQng messages

r Automaticall.l' poD every rso minutes

OK

j

I
Trensmit Test ---'---,;

Transmit Level ii
I iI

JJ S~~~~~~ II
TI Sequence :;

,'" "The lranmit level is II
contJiMtion 01 the above 11
slider. Windows file out Ii
milcer level. sound C41d i,

~a,: ::~e~.,~veb. '1'.1""".The IMlC two tona level

shoUd be about 60Wetts

on II 100 'Welt tJansmtter

and NOT generate

sionilicanl ALe action.
 II

-----~I

Once a connection is manually initiated, SCAMP, using Winlink's B2F protocol (5), automatically
forwards messages requesting repeats as required and monitoring for error conditions and timeouts.
The performance of SCAMP depends of course on the quality ofthe HF channel. To perform realistic
and repeatable tests a DSP based HF channel simulator (6) is used in addition to on-the-air RF tests.

74

The repeatability of the channel simulator and the flexibility of easily modifying the simulated channel
(SIN, fading, multi-path etc) are very helpful in optimizing SCAMP's ARQ mechanism and measuring
and comparing performance.

Initial tests indicate SCAMP should achieve net binary message throughput (after all ARQ and
forwarding protocol overhead but before any B2F compression gains) in the range of3-4 Kbytes per
minute over typical HF channels. This will probably be between Pactor II (500 Hz bandwidth) and
Pactor III (2.2 KHz bandwidth) in similar conditions and 4-6 times faster than typical Pactor I
throughput. When the development and testing is complete I plan to publish detailed comparison data of
these and other modes based on actual measurements made using the HF channel simulator.

Future work
SCAMP is not yet ready for deployment or extensive beta testing. The ARQ and pipelining mechanism

must be made virtually bullet proof with all required timeout mechanisms. Although SCAMP is
intended for manually initiated auto forwarding it will still require an effective busy channel "detector"
to prohibit interference to existing signals in the channel bandwidth. Barry is also working on more
advanced RDFT modulation schemes (7) that may prove an effective way to increase throughput during
good propagation and possibly allowing effective application in VHF SSB or FM channels as well. I
plan to fully document the SCAMP protocol and algorithms allowing others to duplicate and build on
this effort. Barry Sanderson's RDFT is documented and the source code released under the GNU
General Public License (GPL).

Once SCA~'IP is ready, the interfaces to systems like Winlink 2000 must be put in place to support it.
There is however considerable motivation for implementations like SCAMP as good performance
lower-cost alternatives to modes requiring dedicated hardware or DSP processors.

Finally to fully utilize these new types of sound card modes our current band planning regulation must
be restructured. We can no longer accept the regulatory time lag of segregating signals based on mode
(e.g. CW, RTTY, PSK31, Pactor, SSB voice etc). The ARRL is now in the process of developing a
proposal to the FCC to segregate modes by bandwidth, grouping all modes of similar bandwidth to
specific HF band segments. This will not only reduce interference but also promote and encourage the
development of new digital modes and protocols.

Summary
SCAMP represents a new approach in the implementation of sound card modes where the CPU intense

DSP and encoding/decoding functions are first segregated from and then overlapped with the functions

ofuser interface, sound card control, and higher level message protocols. This approach should

encourage more collaboration and experimentation in this segment of our hobby by partitioning these

often-diverse skills

Acknowledgements and References:

This work was made possible by the contributions and encouragement of several fellow hams. As Sir

Isaac Newton said" ... it is by standing on the shoulders ofgiants". Thank you for your time and support:

Barry Sanderson KB9VAK, Roland Zurmely PY4ZBZ, Dave Jones KB4YZ, Vic Poor W5SMM, Steve

Waterman K4CJX, and Scott Thile K4SET.

(1) Winlink 2000 ... A Global Ham Message Transfer and Delivery System, DCC 2000.
http://www.winlink.org/News/dcc2000.htm

75

(2) RDFT (HDSSTV) by Barry Sanderson, KB9VAK
http://www.svs.net/wyrnan/exarnples/hdsstv/index.h trnl

(3) DIGTRX by Roland Zurmely, PY4ZBZ
http://planeta.terra.com.br/lazer/py4zbzlhdsstv/testel.htrnl#digtrx

(4) Telpac and Paclink- Streamlined AX.25 Packet Server and Client for a full service Ham Radio
Messaging Network, DCC 2003.
http://www.winlink.orglNewsIDCC2003.htrn

(5) Winlink 2000 Message Structure and B2 Forwarding Protocol
http://www.winlink.orgIB2F.htrn

(6) A Low-Cost HF Channel Simulator for Testing and Evaluating HF Digital Systems. DCC 1999
Johan B. Forrer, KC7WW
http://www.johanforrer.net/SIMULRI

(7) New Digital Modes Proposed by Barry Sanderson, KB9VAK
http://www.tirna.com/~diones/digrnodes.htrn

76

