
A Software-Defined Radio

for the Masses, Part 1

This series describes a complete PC-base~ software-defined

radio that uses a sound card and an innovative detector

circuit. Mathematics is minimized in the

explanation. Come see how it's done.

Acertain convergence occurs
when multiple technologies
align in time to make possible

those things that once were only
dreamed. The explosive growth of the
Internet starting in 1994 was one of
those events. While the Internet had
existed for many years in government
and education prior to that, its popu
larity had never crossed over into the
general populace because of its slow
speed and arcane interface. The devel
opment of the Web browser, the
rapidly accelerating power and avail
ability of the PC, and the availability
of inexpensive and increasingly

8900 Marybank Dr
Austin, TX 78750
gerald@sixthmarket.com

By Gerald Youngblood, AC50G

speedy modems brought about the
Internet convergence. Suddenly, it all
came together so that the Internet and
the worldwide Web joined the every
day lexicon of our society.

A similar convergence is occurring
in radio communications through digi
tal signal processing (DSP) software to
perform most radio functions at per
formance levels previously considered
unattainable. DSP has now been
incorporated into much of the ama
teur radio gear on the market to de
liver improved noise-reduction and
digital-filtering performance. More
recently, there has been a lot ofdiscus
sion about the emergence of so-called
software-defined radios (SDRs).

A software-defined radio is charac
terized by its flexibility: Simply modi
fying or replacing software programs

can completely change its functional
ity. This allows easy upgrade to new
modes and improved performance
without the need to replace hardware.
SDRs can also be easily modified to
accommodate the operating needs of
individual applications. There is a dis
tinct difference between a radio that
internally uses software for some of its
functions and a radio that can be com
pletely redefined in the field through
modification of software. The latter is
a software-defined radio.

This SDR convergence is occurring
because of advances in software and
silicon that allow digital processing of
radio-frequency signals. Many of
these designs incorporate mathemati
cal functions into hardware to perform
all ofthe digitization, frequency selec
tion, and down-conversion to base-

q~ Jul/Aug 2002 13 76

band. Such systems can be quite com
plex and somewhat out of reach to
most amateurs.

One problem has been that unless
you are a math wizard and proficient
in programming C++ or assembly lan
guage, you are out ofluck. Each can be
somewhat daunting to the amateur as
well as to many professionals. Two
years ago, I set out to attack this chal
lenge armed with a fascination for
technology and a 25-year-old, virtu
ally unused electrical engineering de
gree. I had studied most of the math in
college and even some of the signal
processing theory, but 25 years is a
long time. I found that it really was a
challenge to learn many of the disci
plines required because much of the
literature was written from a math
ematician's perspective.

Now that I am beginning to grasp
many of the concepts involved in soft
ware radios, I want to share with the
Amateur Radio community what I
have learned without using much
more than simple mathematical con
cepts. Further, a software radio
should have as little hardware as pos
sible. If you have a PC with a sound
card, you already have most of the
required hardware. With as few as
three integrated circuits you can be up
and running with a Tayloe detector
an innovative, yet simple, direct-con
version receiver. With less than a
dozen chips, you can build a trans
ceiver that will outperform much of
the commercial gear on the market.

Approach the Theory

In this article series, I have chosen to
focus on practical implementation
rather than on detailed theory. There
are basic facts that must be understood
to build a software radio. However,
much like working with integrated cir
cuits, you don't have to know how to
create the IC in order to use it in a de
sign. The convention I have chosen is to
describe practical applications fol
lowed by references where appropriate
for more detailed study. One of the
easier to comprehend references I have
found is The Scientist and Engineer's
Guide to Digital Signal Processing by
Steven W. Smith. It is free for download
over the Internet at www.DSPGuide.
com. I consider it required reading for
those who want to dig deeper into
implementation as well as theory. I will
refer to it as the "DSP Guide" many
times in this article series for further
study.

So get out your four-function calcu
lator (okay, maybe you need six or

14 Jul/Aug 2002 a~

seven functions) and let's get started.
But first, let's set forth the objectives
of the complete SDR design:
• Keep the math simple
• Use a sound-card equipped PC to pro

vide all signal-processing functions
• Program the user interface and all

signal-processing algorithms in
Visual Basic for easy development
and maintenance

• Utilize the Intel Signal Processing
Library for core DSP routines to
minimize the technical knowledge
requirement and development time,
and to maximize performance

• Integrate a direct conversion (D-C)
receiver for hardware design sim
plicity and wide dynamic range

• Incorporate direct digital synthesis
(DDS) to allow flexible frequency
control

• Include transmit capabilities using
similar techniques as those used in
the D-C receiver.

Analog and Digital Signals in
the Time Domain

To understand DSP we first need to
understand the relationship between
digital signals and their analog coun
terparts. If we look at a I-V (pk) sine
wave on an analog oscilloscope, we see
that the signal makes a perfectly
smooth curve on the scope, no matter
how fast the sweep frequency. In fact,
ifit were possible to build a scope with
an infinitely fast horizontal sweep, it
would still display a perfectly smooth
curve (really a straight line at that
point). As such, it is often called a con
tinuous-time signal since it is continu
ous in time. In other words, there are
an infinite number of different volt
ages along the curve, as can be seen on
the analog oscilloscope trace.

On the other hand, if we were to
measure the same sine wave with a
digital voltmeter at a sampling rate of
four times the frequency of the sine
wave, starting at time equals zero, we
wouldread:OVatO·, 1 Vat90·,OVat
1800 and -1 V at 270 0 over one com
plete cycle. The signal could continue
perpetually, and we would still read
those same four voltages over and
again, forever. We have measured the
voltage of the signal at discrete mo
ments in time. The resulting voltage
measurement sequence is therefore
called a discrete-time signal.

Ifwe save each discrete-time signal
voltage in a computer memory and we
know the frequency at which we
sampled the signal, we have a discrete
time sampled signal. This is what an
analog-to-digital converter (ADC)

does. It uses a sampling clock to mea
sure discrete samples of an incoming
analog signal at precise times, and it
produces a digital representation of
the input sample voltage.

In 1933, Harry Nyquist discovered
that to accurately recover all the com
ponents of a periodic waveform, it is
necessary to use a sampling frequency
of at least twice the bandwidth of the
signal being measured. That mini
mum sampling frequency is called the
Nyquist criterion. This may be ex
pressed as:

Is ~ 2/bw (Eq 1)

wherefs is the sampling rate andfbw is
the bandwidth. See? The math isn't so
bad, is it?

Now as an example of the Nyquist
criterion, let's consider human hear
ing, which typically ranges from 20 Hz
to 20 kHz. To recreate this frequency
response, a CD player must sample at
a frequency of at least 40 kHz. As we
will soon learn, the maximum fre
quency component must be limited to
20 kHz through low-pass filtering to
prevent distortion caused by false im
ages of the signal. To ease filter re
quirements, therefore, CD players use
a standard samplingrateof44,100 Hz.
All modern PC sound cards support
that sampling rate.

What happens if the sampled band
width is greater than halfthe sampling
rate and is not limited by a low-pass
filter? An alias ofthe signal is produced
that appears in the output along with
the original signal. Aliases can cause
distortion, beat notes and unwanted
spurious images. Fortunately, alias
frequencies can be precisely predicted
and prevented with proper low-pass or
band-pass filters, which are often re
ferred to as anti-aliasing filters, as
shown in Fig 1. There are even cases
where the alias frequency can be used
to advantage; that will be discussed
later in the article.

This is the point where most texts
on DSP go into great detail about what
sampled signals look like above the
Nyquist frequency. Since the goal of
this article is practical implementa
tion, I refer you to Chapter 3 of the
DSP Guide for a more in-depth discus
sion of sampling, aliases, A-to-D and

LPF

Signal

Fig 1-AID conversion with antialiaslng
low-pass filter.

77

D-to-A conversion. Also refer to Doug Smith's article, "Sig
nals, Samples, and Stuff: A DSP Tutorial."l

What you need to know for now is that ifwe adhere to the
Nyquist criterion in Eq 1, we can accurately sample, pro
cess and recreate virtually any desired waveform. The
sampled signal will consist of a series of numbers in com
puter'memory measured at time intervals equal to the
sampling rate. Since we now know the amplitude of the
signal at discrete time intervals, we can process the digi
tized signal in software with a precision and flexibility not
possible with analog circuits.

From RF to a PC's Sound Card

Our objective is to convert a modulated radio-frequency
signal from the frequency domain to the time domain for
software processing. In the frequency domain, we measure
amplitude versus frequency (as with a spectrum analyzer);
in the time domain, we measure amplitude versus time (as
with an oscilloscope).

In this application, we choose to use a standard 16-bit PC
sound card that has a maximum sampling rate of
44,100 Hz. According to Eq 1, this means that the maxi
mum-bandwidth signal we can accommodate is 22,050 Hz.
With quadrature sampling, discussed later, this can actu
ally be extended to 44 kHz. Most sound cards have built-in
antialiasing filters that cut off sharply at around 20 kHz.
(For a couple hundred dollars more, PC sound cards are
now available that support 24 bits at a 96-kHz sampling
rate with up to 105 dB of dynamic range.)

Most commercial and amateur DSP designs use dedicated
DSPs that sample intermediate frequencies (lFs) of 40 kHz
or above. They use traditional analog superheterodyne tech
niques for down-conversion and filtering. With the advent of
very-high-speed and wide-bandwidth ADCs, it is now pos
sible to directly sample signals up through the entire HF
range and even into the low VHF range. For example, the
Analog Devices AD9430 AID converter is specified with
sample rates up to 210 Msps at 12 bits of resolution and a
700-MHz bandwidth. That 700-MHz bandwidth can be used
in under-sampling applications, a topic that is beyond the
scope of this article series.

The goal of my project is to build a PC-based software
defined radio that uses as little external hardware as pos
sible while maximizing dynamic range and flexibility. To
do so, we will need to convert the RF signal to audio fre
quencies in a way that allows removal of the unwanted
mixing products or images caused by the down-conversion
process. The simplest way to accomplish this while main
taining wide dynamic range is to use D-C techniques to
translate the modulated RF signal directly to baseband.

'Notes appear on page 21.

LPF
1.5 kHz

14.001 MHz _~ Baseband

~ "OMH'

We can mix the signal with an oscillator tuned to the RF
carrier frequency to translate the bandwidth-limited sig
nal to a O-Hz IF as shown in Fig 2.

The example in the figure shows a 14.001-MHz carrier
signal mixed with a 14.000-MHz local oscillator to translate
the carrier to 1 kHz. If the low-pass filter had a cutoff of
1.5 kHz, any signal between 14.000 MHz and 14.0015 MHz
would be within the passband of the direct-conversion re
ceiver. The problem with this simple approach is that we
would also simultaneously receive all signals between
13.9985 MHz and 14.000 MHz as unwanted images within
the passband, as illustrated in Fig 3. Why is that?

Most amateurs are familiar with the concept of sum and
difference frequencies that result from mixing two signals.
When a carrier frequency, fe' is mixed with a local oscilla
tor, flo' they combine in the general form:

feflo =~[(fe + flo)+(fe - flo)] (Eq 2)

When we use the direct-conversion mixer shown in Fig 2,
we will receive these primary output signals:

fe + fIo = 14.001 MHz + 14.000 MHz = 28.001 MHz

f e - flo = 14.001 MHz -14.000 MHz = 0.001 MHz

Note that we also receive the image frequency that "folds
over" the primary output signals:

-fe + flo =-14.001 MHz+14.000 MHz=-O.OOI MHz

A low-pass filter easily removes the 28.001-MHz sum
frequency, but the -O.OOl-MHz difference-frequency image
will remain in the output. This unwanted image is the
lower sideband with respect to the 14.000-MHz carrier fre
quency. This would not be a problem if there were no sig
nals below 14.000 MHz to interfere. As previously stated,
all undesired signals between 13.9985 and 14.000 MHz will
translate into the passband along with the desired signals
above 14.000 MHz. The image also results in increased
noise in the output.

So how can we remove the image-frequency signals? It
can be accomplished through quadrature mixing. Phasing
or quadrature transmitters and receivers-also called
Weaver-method or image-rejection mixers-have existed
since the early days of single sideband. In fact, my first
SSB transmitter was a used Central Electronics 20A ex
citer that incorporated a phasing design. Phasing systems
lost favor in the early 1960s with the advent ofrelatively
inexpensive, high-performance filters.

To achieve good opposite-sideband or image suppression,
phasing systems require a precise balance of amplitude and
phase between two samples of the signal that are 90° out

Image Signals Real Signals

-28.001 MHz -1 kHz 1 kHz 28.001 MHz

_ __----;1!1lL
(I

t
-l\1,f1--

'

t

Fig 3-0utput spectrum of a real mixer illustrating the sum,Fig 2-A direct-conversion real mixer with a 1.5-kHz low-pass
difference and image frequencies.filter.

q~ Jul/Aug 2002 1578

of phase or in quadrature with each
other-~orthogonal"is the term used
in some texts. Until the advent of digi
tal signal processing, it was difficult
to realize the level of image rejection
performance required ofmodern radio
systems in phasing designs. Since
digital signal processing allows pre
cise numerical control of phase and
amplitude, quadrature modulation
and demodulation are the preferred
methods. Such signals in quadrature
allow virtually any modulation
method to be implemented in software
using DSP techniques.

Give Me I and Q and I Can
Demodulate Anything

First, consider the direct-conversion
mixer shown in Fig 2. When the RF sig
nal is converted to baseband audio us
ing a single channel, we can visualize
the output as varying in amplitude
along a single axis as illustrated in
Fig 4. We will refer to this as the in
phase or I signal. Notice that its magni
tude varies from a positive value to a
negative value at the frequency of the
modulating signal. Ifwe use a diode to
rectify the signal, we would have cre
ated a simple envelope or AM detector.

Remember that in AM envelope de
tection, both modulation sidebands
carry information energy and both are
desired at the output. Only amplitude
information is required to fully de

of the squares of the other two sides
according to the Pythagorean theo
rem. Or restating, the hypotenuse as
mt (magnitude with respect to time):

(Eq 3)

The instantaneous phase ofthe sig
nal as measured counterclockwise
from the positive I axis and may be
computed by the inverse tangent (or
arctangent) as follows:

1¢t = tan-1
[7) (Eq 4)

1

Therefore, if we measured the in
stantaneous values of I and Q, we
would know everything we needed to
know about the signal at a given mo
ment in time. This is true whether we
are dealing with continuous analog
signals or discrete sampled signals.
With I and Q, we can demodulate AM
signals directly using Eq 3 and FM
signals using Eq 4. To demodulate
SSB takes one more step. Quadrature
signals can be used analytically to re
move the image frequencies and leave
only the desired sideband.

The mathematical equations for
quadrature signals are difficult but
are very understandable with a little
study.2 I highly recommend that you
read the online article, "Quadrature

Signals: Complex, But Not Compli
cated," by Richard Lyons. It can be
found at www.dspguru.comlinfo/
tutor/quadsig.htm. The article de
velops in a very logical manner how
quadrature-sampling l/Q demodula
tion is accomplished. A basic under
standing ofthese concepts is essential
to designing software-defined radios.

We can take advantage of the ana
lytic capabilities of quadrature signals
through a quadrature mixer. To under
stand the basic concepts of quadrature
mixing, refer to Fig 6, which illustrates
a quadrature-sampling IIQ mixer.

First, the RF input signal is band
pass filtered and applied to the two
parallel mixer channels. By delaying
the local oscillator wave by 90·, we can
generate a cosine wave that, in tandem,
forms a quadrature oscillator. The RF
carrier, fc(t), is mixed with the respec
tive cosine and sine wave local oscilla
tors and is subsequently low-pass
filtered to create the in-phase, l(t), and
quadrature, Q(t), signals. The Q(t)

o

modulate the original signal. The
problem is that most other modulation
techniques require that the phase of
the signal be known. This is where
quadrature detection comes in. If we
delay a copy ofthe RF carrier by 90 0 to
form a quadrature (Q) signal, we can
then use it in conjunction with the
original in-phase signal and the math
we learned in middle school to deter
mine the instantaneous phase and
amplitude of the original signal.

Fig 5 illustrates an RF carrier with
the level of the I signal plotted on the
x-axis and that ofthe Q signal plotted
on the y-axis of a plane. This is often
referred to in the literature as a
phasor diagram in the complex plane.
We are now able to extrapolate the two
signals to draw an arrow or phasor
that represents the instantaneous
magnitude and phase of the original
signal.

Okay, here is where you will have to
use a couple of those extra functions
on the calculator. To compute the
magnitude mt or envelope of the sig
nal, we use the geometry of right tri
angles. In a right triangle, the square
ofthe hypotenuse is equal to the sum

16 JullAug 2002 q~

o-------.i---__- In Phase

Fig 4-An in-phase signal (I) on the real
plane.The magnitude, m(t)1 is easily
measured as the instantaneous peak
voltage, but no phase information is
available from in-phase detection.This is
the wayan AM envelope detector works.

Fig 5--1 +jQ are shown on the complex
plane.The vector rotates counterclock
wise at a rate of 21tf ' The magnitude and c
phase of the rotating vector at any instant
in time may be determined through Eqs 3
and 4.

I(t)

Ott)

Fig 6-Ouadrature sampling mixer: The RF carrier, 'c- is fed to parallel mixers. The local
oscillator (Sine) is fed to the lower-ehannel mixer directly and Is delayed by 90· (Cosine)
to feed the upper-ehannel mixer.The low-pass filters provide antiallas filtering before
analog-to-digital conversion. The upper channel provides the In-phase (/(1» signal and the
lower channel provides the quadrature (Q.m2signaL In the PC SDR the low-pass filters
and AID converters are integrated on the PC sound card.

79

channel is phase-shifted 90· relative to
the I(t) channel through mixing with
the sine local oscillator. The low-pass
filter is designed for cutoff below the
Nyquist frequency to prevent aliasing
in the AID step. The AID converts con
tinuous-time signals to discrete-time
sampled signals. Now that we have the
I and Q samples in memory, we can
perform the magic of digi tal signal pro
cessing.

Before we go further, let me reiter
ate that one of the problems with this
method of down-conversion is that it
can be costly to get good opposite-side
band suppression with analog circuits.
Any variance in component values will
cause phase or amplitude imbalance
between two channels, resulting in a
corresponding decrease in opposite
sideband suppression. With analog
circuits, it is difficult to achieve better
than 40 dB of suppression without
much higher cost. Fortunately, it is
straightforward to correct the analog
imbalances in software.

Another significant drawback of di
rect-conversion receivers is that the
noise increases as the demodulated sig
nal approaches 0 Hz. Noise contribu
tions come from a number of sources,
such as 11fnoise from the semiconduc
tor devices themselves, 60-Hz and
120-Hz line noise or hum, microphonic
mechanical noise and local-oscillator
phase noise near the carrier frequency.
This can limit sensitivity since most
people prefer their CW tones to be be
low 1 kHz. It turns out that most of
the low-frequency noise rolls off above
1 kHz. Since a sound card can process
signals all the way up to 20 kHz, why
not use some ofthat bandwidth to move
away from the low frequency noise? The
PC SDR uses an 11.025-kHz, offset
baseband IF to reduce the noise to a
manageable level. By offsetting the
local oscillator by 11.025 kHz, we can
now receive signals near the carrier

frequency without any of the low
frequency noise issues. This also
significantly reduces the effects of lo
cal-oscillator phase noise. Once we
have digitally captured the signal, it is
a trivial software task to shift the de
modulated signal down to a O-Hz offset.

DSP in the Frequency Domain
Every DSP text I have read thus far

concentrates on time-domain filtering
and demodulation of SSB signals us
ing finite-impuLse-response (FIR) fil
ters. Since these techniques have been
thoroughly discussed in the litera
ture l , 3,4 and are not currently used in
my PC SDR, they will not be covered
in this article series.

My PC SDR uses the power of the
fast Fourier transform (FFT) to do al
most all of the heavy lifting in the fre
quency domain. Most DSP texts use a
lot of ink to derive the math so that one
can write the FFTcode. Since Intel has
so helpfully provided the code in ex
ecutable form in their signal-process
ing librarY,5 we don't care how to write
an FFT: We just need to know how to
use it. Simply put, the FFT converts
the complex I and Q discrete-time sig
nals into the frequency domain. The
FFT output can be thought of as a
large bank of very narrow band-pass
filters, called bins, each one measur
ing the spectral energy within its
respective bandwidth. The output re
sembles a comb filter wherein each bin
slightly overlaps its adj acent bins
forming a scalloped curve, as shown in
Fig 7. When a signal is precisely at the
cen ter frequency of a bin, there will be
a corresponding value only in that bin.
As the frequency is offset from the
bin's center, there will be a corre
sponding increase in the value of the

adjacent bin and a decrease in the
value of the current bin. Mathemati
cal analysis fully describes the rela
tionship between FFT bins,6 but such
is beyond the scope of this article,

Further, the FFT allows us to mea
sure both phase and amplitude of the
signal within each bin using Eqs 3 and
4 above. The complex version allows us
to measure positive and negative fre
quencies separately. Fig 8 illustrates
the output of a complex, or quadra
ture, FFT.

The bandwidth of each FFT bin may
be computed as shown in Eq 5, where
BWbin is the bandwidth ofa single bin,
fs is the sampling rate and N is the size
of the FFT. The center frequency of
each FFT bin may be determined by
Eq 6 where feenter is the bin's center
frequency, n is the bin number,{s is the
sampling rate and N is the size of the
FFT. Bins zero through (N/2)-l repre
sent upper-sideband frequencies and
bins N/2 to N-1 represent lower-side
band frequencies around the carrier
frequency.

BWbin = Is
N

(Eq 5)

nls
leenler =N (Eq 6)

If we assume the sampling rate of
the sound card is 44.1 kHz and the
number of FFT bins is 4096, then the
bandwidth and center frequency of
each bin would be:

44100
BWb'n = -- = 10.7666 Hz and

I 4096

Icenler = nlO.7666 Hz

What this all means is that the
receiver will have 4096, -ll-Hz-wide

Ie
nls

Center~ N

Frequency

Fig 7-FFT output resembles a comb filter:
Each bin of the FFT overlaps its adjacent
bins just as in a comb filter. The 3·dB
points overlap to provide linear output. The
phase and magnitude of the signal in each
bin is easily determined mathematically
with Eqs 3 and 4.

~~~~
 t LSB USB t 
N !::! _ 1 
2 2 

(Bin 2048) (Bin 2047) 

Fig 8-Complex FFT output: The output of a. complex FFT may b~ thought of as a series 
of band-pass filters aligned around the carner frequency, fe' at bm O. N represents the 
number of FFT bins. The upper sideband is located in bins 1 through (N/2}-1 a.nd the 
lower sideband is located in bins N/2 to ~1.The center frequency and bandWidth of 
each bin may be calculated using Eqs 5 and 6. 

QE*o-- JullAug 2002 17 80 



band-pass filters. We can therefore 
create band-pass filters from 11 Hz to 

LMS Noiseapproximately 40 kHz in 11-Hz steps. 
& Notch

The PC SDR performs the following Q Filter 
functions in the frequency domain af
ter FFT conversion: 
• Brick-wall fixed	 and variable band-

pass filters 
• Frequency conversion 
• SSB/CW demodulation 
• Sideband selection 
• Frequency-domain noise subtraction 
• Frequency-selective squelch 
• Noise blanking 
• Graphic equalization ("tone control") 
• Phase and amplitude balancing to 

remove images 

2048 Taps 

Amplitude 
& Phase 

Correction 

DigitalAGC
 
1 ms Attack
 

100,200,300 ms Hold
 

• SSB generation 
• Future digital modes such as PSK31 

and RTTY 
Once the desired frequency-domain 

processing is completed, it is simple to 
convert the signal back to the time do
main by using an inverse FFT. In the 
PC SDR, only AGC and adaptive noise 
filtering are currently performed in the 
time domain. A simplified diagram of 
the PC SDR software architecture is 
provided in Fig 9. These concepts 
will be discussed in detail in a future 
article. 

Sampling RF Signals with the 
Tayloe Detector: A New Twist 
on an Old Problem 

While searching the Internet for 
information on quadrature mixing, I 
ran across a most innovative and el
egant design by Dan Tayloe, N7VE. 
Dan, who works for Motorola, has de
veloped and patented (US Patent 
#6,230,000) what has been called the 
Tayloe detector7 . The beauty of the 
Tayloe detector is found in both its 
design elegance and its exceptional 
performance. It resembles other con
cepts in design, but appears unique in 
its high performance with minimal 
components.B, 9, 10, 11 In its simplest 
form, you can build a complete quadra
ture down converter with only three or 
four ICs (less the local oscillator) at a 
cost ofless than $10. 

Fig 10 illustrates a single-balanced 
version of the Tayloe detector. It can be 
visualized as a four-position rotary 
switch revolving at a rate equal to the 
carrier frequency. The 50-n antenna 
impedance is connected to the rotor and 
each of the four switch positions is con
nected to a sampling capacitor. Since 
the switch rotor is turning at exactly 
the RF carrier frequency, each capaci
tor will track the carrier's amplitude 
for exactly one-quarter of the cycle and 
will hold its value for the remainder of 

18 JullAug 2002 q~ 

Fig 9-SDR receiver software architecture: The I and Q signals are fed from the sound
card input directly to a 40gB-bin complex FFT. Band-pass filter coefficients are 
precomputed and converted to the frequency domain using another FFT.The frequency
domain filter is then mUltiplied by the frequency-domain signal to provide brick-wall 
filtering. The filtered signal Is then converted to the time domain using the Inverse FFT. 
Adaptive noise and notch filtering and digital AGC follow In the time domain. 

~-------l 

I 50 Ohm Antenna 1 
O'I 

I 
I 
I 
I 
1 
I 
I Q 
'  1 

to provide the quadrature (0) signal. 

the cycle. The rotating switch will 
therefore sample the signal at 0·, 90·, 
180· and 270·, respectively. 

As shown in Fig 11, the 50-n imped
ance of the antenna and the sampling 
capacitors form an R-C low-pass filter 
during the period when each respec
tive switch is turned on. Therefore, 
each sample represents the integral or 
average voltage ofthe signal during its 
respective one-quarter cycle. When 
the switch is off, each sampling capaci
tor will hold its value until the next 
revolution. If the RF carrier and the 
rotating frequency were exactly in 
phase, the output of each capacitor 
will be a dc level equal to the average 

...-Jov'Vv--c-r I o-y--C>--i Baseband 

I 1'c 
I rt7 5 

~ 

Fig 11-Track and hold sampling circuit: 
Each of the tour sampling capacitors in the 
Tayloe detector form an RC track-and-hold 
circuit. When the switch Is on, the 
capacitor will charge to the average value 
of the carrier during its respective one
quarter cycle. During the remaining three
quarters cycle, It will hold its charge. The 
local-oscillator frequency Is equal to the 
carrier frequency so that the output will be 
at baseband. 

Fig 1G-Tayloe detector: The switch rotates at the carrier frequency so that each 
capacitor samples the signal once each revolution. The 0" and 180" capacitors 
differentially sum to provide the In-phase (I) signal and the 90· and 270· capacitors sum 

81 



--

--

value of the sample. 
If we differentially sum outputs of 

the 0° and 180° sampling capacitors 
with an op amp (see Fig 10), the out
put would be a dc voltage equal to two 
times the value of the individually 
sampled values when the switch rota
tion frequency equals the carrier fre
quency. Imagine, 6 dB of noise-free 
gain! The same would be true for the 
90° and 270° capacitors as well. The 
0°/180° summation forms the] chan
nel and the 90°/270° summation forms 
the Q channel ofthe quadrature down
conversion. 

As we shift the frequency of the car
rier away from the sampling fre
quency, the values of the inverting 
phases will no longer be dc levels. The 
output frequency will vary according 
to the "beat" or difference frequency 
between the carrier and the switch-ro
tation frequency to provide an accu
rate representation of all the signal 

components converted to baseband. 
Fig 12 provides the schematic for a 

simple, single-balanced Tayloe detec
tor. It consists of a P15V331, 1:4 FET 
demultiplexer that switches the signal 
to each of the four sampling capaci
tors. The 74AC74 dual flip-flop is con
nected as a divide-by-four Johnson 
counter to provide the two-phase clock 
to the demultiplexer chip. The outputs 
of the sampling capacitors are differ
entially summed through the two 
LT1l15 ultra-low-noise op amps to 
form the] and Q outputs, respectively. 
Note that the impedance of the 
antenna forms the input resistance for 
the op-amp gain as shown in Eq 7. This 
impedance may vary significantly 
with the actual antenna. I use instru
mentation amplifiers in my final de
sign to eliminate gain variance with 
antenna impedance. More informa
tion on the hardware design will be 
provided in a future article. 

Since the duty cycle of each switch 
is 25%, the effective resistance in the 
RC network is the antenna impedance 
multiplied by four in the op-amp gain 
formula, as shown in Eq 7: 

(Eq 7) 

For example, with a feedback resis
tance, R rf of 3.3 k12 and antenna im
pedance, Rant' of 50 12, the resulting 
gain of the input stage is: 

G = 3300 =16.5 
4x50 

The Tayloe detector may also be 
analyzed as a digital commutating fil
ter .12,13,14 This means that it operates 
as a very-high-Q tracking filter, where 
Eq 8 determines the bandwidth and n 
is the number of sampling capacitors, 

+12 V 
-~ 

U1 
l T1115 8C11;+; 1 IJF00 =O· In - Phase Ch annel (I) 
3~7 Ouadrature C hannel (0)

6 f'\. 

-o...!'2~4 

nC12 

~1IJF-.... 
-12 V 

R5 

C3 3.3 k 
II 

" 0.01 

+12 V 
-~ 

U2 ~ 
lT1115 + C14;+; 1 IJF01 =90· ~7 

6 

~C15fh 1IJF 

-12 V
 
R6
 

C2 3.3 k 

" 0.01 
Except as indicated, decimal values of capacitance 
are in microfarads (IJF): others are in picof arads 
(pF): resistances are in ohms: 
k =1,000. 
n.C. =No connection 

11 =180· 

L. C4..L 

0.27~ 

3 
+ 

10 =270· 
2 I:/' 4 

C16 L. c191 

0.27~ 

J1 C7 
Antenna~

0- 54 MHz 

R1 
I

Vee 
« 2.2 k 

J2
 
lO -I
 

0- 120 MHz
 

'V',/ 

Count Sequence O. 1, 3, 2 or 0, 2, 3, 1 

Tayloe Detector 

,J 
t RFC1 

C1>- 100 IJH 

0.001 

R3 
100 k 

rI-T 

7 61Y 1CO 
5U 2Y 1C1 
41C2 
31C3 

2CO .J-Q...
112C1 
122C2 
13C8+ C18 R4 2C3
 

;1" 47 IJF '1" 0.1 IJF
 142.2 k A 
2B 

U2 lG~2G 15 
PI583253 

Johnson Counter 

U1A 
74AC74 

4 5PRE 0 
L...1. 0 

3 ClK 
1 QClR ~n.c. 

U1B 
74AC74 

10 -PRE o~n.c. 
.E.. 0 

11 ClK 
13 8QClR 

2.5 V Detector Bia~ 

r7 

Vee 

R2 
100 k 

C8 
If 

1\ 

I~ 

0.001 

Fig 12-Singly balanced Tayloe detector. 

qE*s- JullAug 2002 1982 



Rant is the antenna impedance and Cs 
is the value ofthe individual sampling 
capacitors. Eq 9 determines the Qdet 
of the filter, where fc is the center fre
quency and BWdet is the bandwidth of 
the filter. 

(Eq 8) 

Q ~ mqID
det=-BW 

det 
By example, if we assume the sam

pling capacitor to be 0.27 p.F and the 
antenna impedance to be 50 n, then 
BW and Q are computed as follows: 

1 
= = 5895 Hz BWdet 

(Jr)(4)(50)(2.7XIO-7 ) 

6 
n. = 14.001x10 = 2375
 
~el 5895
 

Since the PC SDR uses an offset 
baseband IF, I have chosen to design 
the detector's bandwidth to be 40 kHz 
to allow low-frequency noise elimina
tion as discussed above. 

The real payoff in the Tayloe detec
tor is its performance. It has been 
stated that the ideal commutating 
mixer has a minimum conversion loss 
(which equates to noise figure) of 
3.9 dB.l5, 16 Typical high-level diode 
mixers have a conversion loss of6-7 dB 
and noise figures 1 dB higher than the 
loss. The Tayloe detector has less than 
1 dB of conversion loss, remarkably. 
How can this be? The reason is that it 
is not really a mixer but a sampling 
detector in the form of a quadrature 
track and hold. This means that the 
design adheres to discrete-time sam
pling theory, which, while similar to 
mixing, has its own unique character
istics. Because a track and hold actu
ally holds the signal value between 
samples, the signal output never goes 
to zero. 

This is where aliasing can actually 
be used to our benefit. Since each 
switch and capacitor in the Tayloe 
detector actually samples the RF sig
nal once each cycle, it will respond to 
alias frequencies as well as those 
within the Nyquist frequency range. 
In a traditional direct-conversion re
ceiver, the local-oscillator frequency is 
set to the carrier frequency so that the 
difference frequency, or IF, is at 0 Hz 
and the sum frequency is at two times 
the carrier frequency per Eq 2. We 
normally remove the sum frequency 
through low-pass filtering, resulting 
in conversion loss and a corresponding 

20 Jul/Aug 2002 q~ 

increase in noise figure. In the Tayloe 
detector, the sum frequency resides at 
the first alias frequency as shown in 
Fig 13. Remember that an alias is a 
real signal and will appear in the out
put as if it were a baseband signal. 
Therefore, the alias adds to the base
band signal for a theoretically loss
less detector. In real life, there is a 
slight loss due to the resistance ofthe 
switch and aperture loss due to imper
fect switching times. 

PC SDR Transceiver Hardware 

The Tayloe detector therefore pro
vides a low-cost, high-performance 
method for both quadrature down-con
version as well as up-conversion for 
transmitting. For a complete system, 
we would need to provide analog AGC 
to prevent overload of the ADC inputs 
and a means of digital frequency con
trol. Fig 14 illustrates the hardware 

PC Control & 
I & a AUdio 

Log Amplifier 

AD8307 

PI5V331 

architecture ofthe PC SDR receiver as 
it currently exists. The challenge has 
been to build a low-noise analog chain 
that matches the dynamic range ofthe 
Tayloe detector to the dynamic range 
of the PC sound card. This will be cov
ered in a future article. 

I am currently prototyping a 
complete PC SDR transceiver, the 
SDR-I000, that will provide general
coverage receive from 100 kHz to 
54 MHz and will transmit on all ham 
bands from 160 through 6 meters. 

SDR Applications 
At the time of this writing, the typi

cal entry-level PC now runs at a clock 
frequency greater than 1 GHz and 
costs only a few hundred dollars. We 
now have exceptional processing 
power at our disposal to perform DSP 
tasks that were once only dreams. The 
transfer of knowledge from the aca

o 
Alias Alias 

Fig 13-Alias summing on Tayloe detector output: Since the Tayloe detector samples the 
signal the sum frequency (fc + fs) and Its Image (-fc - fs) are located at the first alias 
frequency.The alias signals sum with the baseband signals to eliminate the mixing 
product loss associated with traditional mixers. In a typical mixer, the sum frequency 
energy Is lost through filtering thereby increasing the noise figure of the device. 

SSM2164 

Audio 

Fig 14-PC SDR receiver hardware architecture: After band-pass filtering the antenna is 
fed directly to the Tayloe detector, which In turn provides I and Q outputs at baseband. A 
DDS and a divide-by-four Johnson counter drive the Tayloe detector demultiplexer.The 
LT1115s offer ultra-low noise-differential summing and amplification prior to the wide
dynamic-range analog AGC circuit formed by the SSM2164 and AD830710g amplifier. 

83 



demic to the practical is the primary 
limit ofthe availability ofthis technol
ogy to the Amateur Radio experi
menter. This article series attempts to 
demystify some of the fundamental 
concepts to encourage experimenta
tion within our community. TheARRL 
recently formed a SDR Working Group 
for supporting this effort, as well. 

The SDR mimics the analog world in 
digital data, which can be manipu
lated much more precisely. Analog 
radio has always been modeled math
ematically and can therefore be pro
cessed in a computer. This means that 
virtually any modulation scheme may 
be handled digitally with performance 
levels difficult, or impossible, to attain 
with analog circuits. Let's consider 
some of the amateur applications for 
the SDR: 
• Competition-grade HF transceivers 
• High-performance IF for microwave 

bands 
• Multimode digital transceiver 
• EME and weak-signal work 
• Digital-voice modes 
• Dream it and code it 

For Further Reading 
For more in-depth study of DSP 

techniques, I highly recommend that 
you purchase the following texts in 
order of their listing: 

Understanding Digital Signal Pro
cessing by Richard G. Lyons (see Note 
6). This is one of the best-written text
books about DSP. 

Digital Signal Processing Technol
ogy by Doug Smith (see Note 4). This 
new book explains DSP theory and 
application from an Amateur Radio 
perspective. 

Digital Signal Processing in Com
munications Systems by Marvin E. 
Frerking (see Note 3). This book re
lates DSP theory specifically to modu
lation and demodulation techniques 
for radio applications. 

Acknowledgements 
I would like to thank those who have 

assisted me in my journey to under
standing software radios. Dan Tayloe, 
N7VE, has always been helpful and 
responsive in answering questions 
about the Tayloe detector. Doug Smith, 
KF6DX, and Leif Asbrink, SM5BSZ, 
have been gracious to answer my ques
tions about DSP and receiver design on 
numerous occasions. Most of all, I want 
to thank my Saturday-morning break
fast review team: Mike Pendley, 

WA5VTV; Ken Simmons, K5UHF; Rick 
Kirchhof, KD5ABM; and Chuck 
McLeavy, WB5BMH. These guys put 
up with my questions every week and 
have given me tremendous advice and 
feedback all throughout the project. I 
also want to thank my wonderful wife, 
Virginia, who has been incredibly pa
tient with all the hours I have put in on 
this project. 

Where Do We Go From Here? 

Three future articles will describe 
the construction and programming of 
the PC SDR. The next article in the 
series will detail the software interface 
to the PC sound card. Integrating full
duplex sound with DirectX was one of 
the more challenging parts of the 
project. The third article will describe 
the Visual Basic code and the use of the 
Intel Signal Processing Library for 
implementing the key DSP algorithms 
in radio communications. The final 
article will describe the completed 
transceiver hardware for the SDR
1000. 

Notes 
1D. Smith, KF6DX, "Signals, Samples and 

Stuff: A DSP Tutorial (Part 1)," QEX, Mar/ 
Apr 1998, pp 3-11. 

2J. Bloom, KE3Z, "Negative Frequencies 
and Complex Signals," QEX, Sep 1994, 
pp 22-27. 

3M. E. Frerking, Digital Signal Processing in 
Communication Systems (New York: Van 
Nostrand Reinhold, 1994, ISBN: 
0442016166), pp 272-286. 

4D. Smith, KF6DX, Digital Signal Processing 
Technology (Newington, Connecticut: 
ARRL, 2001), pp 5-1 through 5-38. 

5The Intel Signal Processing Library is avail
able for download at developer.lntel. 
com/software/products/perflib/spl/. 

6R. G. Lyons, Understanding Digital Signal 
Processing, (Reading, Massachusetts: 
Addison-Wesley, 1997). pp 49-146. 

7D. Tayloe, N7VE, "Letters to the Editor, 
Notes on'ldeal' Commutating Mixers (Nov/ 
Dec 1999)," QEX, March/April 2001, p 61. 

8p. Rice, VK3BHR, "SSB by the Fourth 
Method?" available at ironbark.bendigo. 
latrobe.edu.au/-rice/ssb/ssb.html. 

gA. A. Abidi, "Direct-Conversion Radio 
Transceivers lor Digital Communications," 
IEEE Journal of Solid-State CirCUits, 
Vol 30, No 12, December 1995, pp 1399
1410, Also on the Web at www.icsl.ucla. 
edu/aagroup/PDF_files/dir-con.pdf 

10p. Y. Chan, A. Rolougaran, K.A. Ahmed, 
and A. A. Abidi, "A Highly Linear 1-GHz 
CMOS Downconversion Mixer." Presented 
at the European Solid State Circuits Con
ference, Seville, Spain, Sep 22-24, 1993, 
pp 210-213 of the conlerence proceed
ings. Also on the Web at www.icsl.ucla. 
edu/aagroup/PDF_files/mxr-93.pdf 

11 D. H. van Graas, PA0DEN, "The Fourth 
Method: Generating and Detecting SSB 
Signals," QEX, Sep 1990, pp 7-11. This 
circuit is very similar to a Tayloe detector, 
but it has a lot of unnecessary compo
nents. 

12M. Kossor, WA2EBY, "A Digital Commu
tating Filter," QEX, May/Jun 1999, pp 3-8. 

13C. Ping, BA1 HAM, "An Improved Switched 
Capacitor Filter," QEX, Sep/Oct 2000, pp 
41-45. 

14p. Anderson, KC1HR, "Letters to the Edi
tor, A Digital Commutating Filter," QEX, 
Jul/Aug 1999, pp 62. 

15D. Smith, KF6DX, "Notes on 'Ideal' Com
mutating Mixers," QEX, Nov/Dec 1999, 
pp 52-54. 

16p. Chadwick, G3RZP, "Letters to the Editor, 
Notes on 'Ideal' Commutating Mixers" (Nov/ 
Dec 1999), QEX, Mar/Apr 2000, pp 61-62. 

Gerald became a ham in 1967 dur
ing high school, first as a Novice and 
then a General class as WA5RXV. He 
completed his Advanced class license 
and became KE50H before finishing 
high school and received his First 
Class Radiotelephone license while 
working in the television broadcast 
industry during college. After 25 years 
ofinactivity, Gerald returned to the ac
tive amateur ranks in 1997 when he 
completed the requirements for Extra 
class license and became AC50G. 

Gerald lives in Austin, Texas, and is 
currently CEO of Sixth Market Inc, a 
hedge fund that trades equities using 
artificial-intelligence software. Gerald 
previously founded and ran five tech
nology companies spanning hardware, 
software and electronic manufacturing. 
Gerald holds a Bachelor of Science De
gree in Electrical Engineering from 
Mississippi Stage University. 

Gerald is a member of the ARRL 
SDR working Group and currently 
enjoys homebrew software-radio devel
opment, 6-meter DX and satellite op
erations. DO 

q~ Jul/Aug 2002 21 84 



A Software-Defined Radio
 
for the Masses, Part 2
 

Come learn how to use a PC sound card to enter 
the wondeiful world of digital signalprocessing. 

By Gerald Youngblood, AC50G 

Part 1 gave a general description 
of digital signal processing 
(nSP) in software-defined ra

dios (SDRs).l It also provided an over
view of a full-featured radio that uses 
a personal computer to perform all 
DSP functions. This article begins de
sign implementation with a complete 
description of software that provides 
a full-duplex interface to a standard 
PC sound card. 

To perform the magic ofdigital sig
nal processing, we must be able to con
vert a signal from analog to digital and 
back to analog again. Most amateur 
experimenters already have this ca

1Notes appear on page 18. 

8900 Marybank Dr 
Austin, TX 78750 
gerald@sixthmarket.com 

10 Sept/Oct 2002 q~ 

pability in their shacks and many 
have used it for slow-scan television 
or the new digital modes like PSK3l. 

Part 1 discussed the power of 
quadrature signal processing using in
phase <n and quadrature (Q) signals 
to receive or transmit using virtually 
any modulation method. Fortunately, 
all modem PC sound cards offer the 
perfect method for digitizing the I and 
Q signals. Since virtually all cards to
day provide 16-bit stereo at 44-kHz 
sampling rates, we have exactly what 
we need capture and process the sig
nals in software. Fig 1 illustrates a 
direct quadrature-conversion mixer 
connection to a PC sound card. 

This article discusses complete 
source code for a DirectX. sound-card 
interface in Microsoft Visual Basic. 
Consequently, the discussion assumes 
that the reader has some fundamen

tal knowledge of high-level language 
programming. 

Sound Card and PC Capabilities 
Very early PC sound cards were low

performance, 8-bit mono versions. To
day, virtually all PCs come with 
16-bit stereo cards of sufficient quality 
to be used in a software-defined radio. 
Such a card will allow us to demodu
late, filter and display up to approxi
matelya 44-kHz bandwidth, assuming 
a 44-kHz sampling rate. (The band
width is 44 kHz, rather than 22 kHz, 
because the use of two channels effec
tively doubles the sampling rate-Ed.) 
For high-performance applications, it is 
important to select a card that offers a 
high dynamic range-on the order of 
90 dB. If you are just getting started, 
most PC sound cards will allow you to 
begin experimentation, although they 

85 



may offer lower performance. 
The best l6-bit price-to-perfor

mance ratio I have found at the time 
of this article is the Santa Cruz 6
channel DSP Audio Accelerator from 
Turtle Beach Inc (www.tbeach.com). 
It offers four 18-bit internal analog
to-digital (AJD) input channels and six 
20-bit digital-to-analog (D/A) output 
channels with sampling rates up to 
48 kHz. The manufacturer specifies a 
96-dB signal-to-noise ratio (SNR) and 
better than -91 dB total harmonic dis
tortion plus noise (THD+N). Crosstalk 
is stated to be -105 dB at 100 Hz. The 
Santa Cruz card can be purchased 
from online retailers for under $70. 

Each bit on anAJD or D/A converter 
represents 6 dB of dynamic range, so 
a 16-bit converter has a theoretical 
limit of 96 dB. A very good converter 
with low-noise design is required to 
achieve this level of performance. 
Many l6-bit sound cards provide no 
more than 12-14 effective bits of dy
namic range. To help achieve higher 
performance, the Santa Cruz card uses 
an 18-bit AID converter to deliver 
the 96 dB dynamic range (16-bit) 
specification. 

A SoundBlaster 64 also provides 
reasonable performance on the order 
of76 dB SNR according to PC AV Tech 
at www.pcavtech.com. I have used 
this card with good results, but I much 
prefer the Santa Cruz card. 

The processing power needed from 
the PC depends greatly on the signal 
processing required by the application. 
Since I am using very-high-perfor
mance filters and large fast-Fourier 
transforms (FFTs), my applications 
require at least a 400-MHz Pentium 
II processor with a minimum of 
128 MB of RAM. If you require less 
performance from the software, you 
can get by with a much slower ma
chine. Since the entry level for new 
PCs is now 1 GHz, many amateurs 
have ample processing power avail
able. 

Microsoft DirectX versus 
Windows Multimedia 

Digital signal processing using a PC 
sound card requires that we be able to 
capture blocks ofdigitized I and Qdata 
through the stereo inputs, process those 
signals and return them to the sound
card outputs in pseudo real time. This 
is called full duplex. Unfortunately, 
there is no high-level software interface 
that offers the capabilities we need for 
the SDR application. 

Microsoft now provides two appli
cation programming interfaces2 (APls) 
that allow direct access to the sound 
card under C++ and Visual Basic. The 
original interface is the Windows Mul

timedia system using the Waveform 
Audio API. While my early work was 
done with the Waveform Audio API, I 
later abandoned it for the higher per
formance and simpler interface 
DirectX offers. The only limitation I 
have found with DirectX is that it does 
not currently support sound cards 
with more than l6-bits of resolution. 
For 24-bit cards, Windows Multimedia 
is required. While the Santa Cruz card 
supports l8-bits internally, it presents 
only 16-bits to the interface. For in
formation on where to download the 
DirectX software development kit 
(SDK) see Note 2. 

Circular Buffer Concepts 
A typical full-duplex PC sound card 

PC Control & 
1& QAudio 

Log Amplifier 

AD8307 

Tayloe 
Detector 

PI5V331 

Fig 1-Direct quadrature conversion mixer to sound-card interface used in the author's 
prototype. 

o 

I Play I~-T-_I- I Write 

(B) 

o 

I Play +--7'-_-.1 I Write 

6144 

2048 
0 BI 

1 I 
( \ 

I I 
\ I 

2048 
(A) DireclSoundCaptureBuffer 

4096 
(C) DirectSoundBuffer 

Fig 2-DirectSoundCaptureBuffer and DirectSoundBuffer circular buffer layout. 

q~ Sept/Oct 2002 11 

allows the simultaneous capture and playback of two or more audio chan
nels (stereo). Unfortunately, there is 
no high-level code in Visual Basic or 

.. 

." '" . 
C++ to directly support full duplex as • 
required in an SDR. We will therefore 
have to write code to directly control 
the card through the DirectX API. 

DirectX internally manages all low
level buffers and their respective 
interfaces to the sound-card hard
ware. Our code will have to manage 
the high-level DirectX buffers 
(called DirectSoundBuffer and 
DirectSoundCaptureBuffer) to pro
vide uninterrupted operation in 
a multitasking system. The Direct
SoundCaptureBuffer stores the digi
tized signals from the stereo 

SSM2164 

Audio 

86 



•••••• 

ND converter in a circular buffer and 
notifies the application upon the 
occurrence of predefined events. Once 
captured in the buffer, we can read 
the data, perform the necessary modu
lation or demodulation functions us
ing DSP and send the data to the 
DirectSoundBuffer for D/A conversion 
and output to the speakers or trans
mitter. 

To provide smooth operation in a 
multitracking system without audio 
popping or interruption, it will be nec
essary to provide a multilevel buffer for 
both capture and playback. You may 
have heard the term double buffering. 
We will use double buffering in the 
DirectS 0 undC a ptu reB uffer 
and quadruple buffering in the 
DirectSoundBuffer. I found that the 
quad buffer with overwrite detection 
was required on the output to prevent 
overwriting problems when the system 
is heavily loaded with other applica
tions. Figs 2A and 2B illustrate the 
concept of a circular double buffer, 
which is used for the Direct
SoundCaptureBuffer. Although the 
buffer is really a linear array in 
memory, as shown in Fig 2B, we can 
visualize it as circular, as illustrated in 
Fig 2A. This is so because DirectX man
ages the buffer so that as soon as each 
cursor reaches the end of the array, the 
driver resets the cursor to the begin
ning of the buffer. 

The DirectSoundCaptureBuffer is 
broken into two blocks, each equal in 
size to the amount of data to be cap
tured and processed between each 
event. Note that an event is much like 
an interrupt. In our case, we will use 
a block size of2048 samples. Since we 
are using a stereo (two-channel) board 
with 16 bits per channel, we will be 
capturing 8192 bytes per block (2048 
samples x 2 channels x 2 bytes). There
fore, the DirectSoundCaptureBuffer 
will be twice as large (16,384 bytes). 

Since the DirectSoundCapture 
Buffer is divided into two data blocks, 
we will need to send an event notifica
tion to the application after each block 
has been captured. The DirectX driver 
maintains cursors that track the posi
tion of the capture operation at all 
times. The driver provides the means 
of setting specific locations within the 
buffer that cause an event to trigger, 
thereby telling the application to re
trieve the data. We may then read the 
correct block directly from the 
DirectSoundCaptureBuffer segment 
that has been completed. 

Referring again to Fig 2A, the two 
cursors resemble the hands on a clock 
face rotating in a clockwise direction. 
The capture cursor, IPlay, represents 
the point at which data are currently 

12 Sept/Oct 2002 q~ 

being captured. (I know that sounds 
backward, but that is how Microsoft 
defined it.) The read cursor, IWrite, 
trails the capture cursor and indicates 
the point up to which data can safely 
be read. The data after IWrite and up 
to and including IPlay are not neces
sarily good data because of hardware 
buffering. We can use the IWrite cur
sor to trigger an event that tells the 
software to read each respective block 
of data, as will be discussed later in 
the article. We will therefore receive 
two events per revolution of the circu
lar buffer. Data can be captured into 
one half of the buffer while data are 
being read from the other half. 

Fig 2C illustrates the Direct
SoundBuffer, which is used to output 
data to the D/A converters. In this case, 
we will use a quadruple buffer to allow 
plenty of room between the currently 
playing segment and the segment be
ing written. The play cursor, IPlay, al
ways points to the next byte of data to 
be played. The write cursor, IWrite, is 
the point after which it is safe to write 
data into the buffer. The cursors may 
be thought of as rotating in a clockwise 
motion just as the capture cursors do. 
We must monitor the location of the 
cursors before writing to buffer loca
tions between the cursors to prevent 

overwriting data that have already 
been committed to the hardware for 
playback. 

Now let's consider how the data 
maps from the DirectSoundCapture
Buffer to the DirectSoundBuffer. To 
prevent gaps or pops in the sound due 
to processor loading, we will want to 
fill the entire quadruple buffer before 
starting the playback looping. DirectX 
allows the application to set the start
ing point for the IPlay cursor and to 
start the playback at any time. 
Fig 3 shows how the data blocks map 
sequentially from the Direct
SoundCaptureBuffer to the Direct
SoundBuffer. Block 0 from the 
DirectSoundCaptureBuffer is trans
ferred to Block 0 of the Direct
SoundBuffer. Block 1 of the 
DirectSoundCaptureBuffer is next 
transferred to Block 1 of the 
DirectSoundBuffer and so forth. The 
subsequent source-code examples show 
how control of the buffers is accom
plished. 

Full Duplex, Step-by-Step 
The following sections provide a 

detailed discussion of full-duplex 
DirectX implementation. The example 
code captures and plays back a stereo 
audio signal that is delayed by four 

Fig 3-Method for mapping the 
DireclSoundCaplureBuffer 

... Direct 1.0 Type Library 
[] DirectAnimation Library 
[] DirectShowStream 1.0 Type Library 

0!iiiDilreicDtx,7~fomriv~isliuamlmB~asiicITilemLi~brlalir
~!.!ooDmi 1.0 Type Library 
oDrawing Addin 
o drivers 1.0 Type Library 
o dsctl 1.0 Type Library 
odtcint 1.0 Type Library 
ODTC5erv 1.0 Type Library 
ODXTMsft 1.0 Type Library 
ODXTMsft3 1.0 Type Library 

DirectSoundCaptureBuffer to 
the DlrectSoundBuffer. 

Fig 4-Registration of the DirectX8 for Visual BasicType Library in the Visual 
Basic IDE. 

87 



capture periods through buffering. You 
should refer to the "DirectX Audio" 
section of the DirectX 8.0 Program
mers Reference that is installed with 
the DirectX software developer's kit 
(SDK)throughout this discussion. The 
DSP code will be discussed in the next 
article of this series, which will dis
cuss the modulation and demodula
tion ofquadrature signals in the SDR. 
Here are the steps involved in creat
ing the DirectX interface: 
• Install DirectX runtime and SDK. 

• Add a	 reference to DirectX8 for 
Visual Basic Type Library. 

• Define Variables, I/O buffers	 and 
DirectX objects. 

•	 Implement DirectX8 events and 
event handles. 

• Create the audio devices. 
• Create the DirectX events. 
• Start and stop capture and play buff

ers. 
• Process the DirectXEvent8. 
• Fill the play buffer before starting 

playback. 

• Detect and correct overwrite errors. 
• Parse the stereo buffer into I and Q 

signals. 
• Destroy objects and events on exit. 

Complete functional source code for 
the DirectX driver written in Microsoft 
Visual Basic is provided for download 
from the QEXWeb site.3 

Install DirectX and Register it 
within Visual Basic 

The first step is to download the 
DirectX driver and the DirectX SDK 

Option Explicit 

'Define Constants 
Canst Fs As Long = 44100 'Sampling frequency Hz 
Canst NFFT As Long = 4096 'Number of FFT bins 
Canst BLKSIZE As Long = 2048 'Capture/play block size 
Const CAPTURESIZE As Long = 4096 'Capture Buffer size 

'Define DirectX Objects 
Dim dx As New DirectX8 'DirectX object 
Dim ds As DirectSound8 'DirectSound object 
Dim dspb As DirectSoundPrimaryBuffer8 'Primary buffer object 
Dim dsc As DirectSoundCapture8 'Capture object 
Dim dsb As DirectSoundSecondaryBuffer8 'Output Buffer object 
Dim dscb As DirectSoundCaptureBuffer8 'Capture Buffer object 

'Define Type Definitions 
Dim dscbd As DSCBUFFERDESC 'Capture buffer description 
Dim dsbd As DSBUFFERDESC 'DirectSound buffer description 
Dim dspbd As WAVEFORMATEX 'Primary buffer description 
Dim CapCurs As DSCURSORS 'DirectSound Capture Cursor 
Dim PlyCurs As DSCURSORS 'DirectSound Play Cursor 

'Create I/O Sound Buffers 
Dim inBuffer(CAPTURESIZE) As Integer 'Demodulator Input Buffer 
Dim outBuffer(CAPTURESIZE) As Integer 'Demodulator Output Buffer 

'Define pointers and counters 
Dim Pass As Long 'Number of capture passes 
Dim InPtr As Long 'Capture Buffer block pointer 
Dim OutPtr As Long 'Output Buffer block pointer 
Dim StartAddr As Long 'Buffer block starting address 
Dim EndAddr As Long 'Ending buffer block address 
Dim CaptureBytes As Long 'Capture bytes to read 

'Define loop counter variables for timing the capture event cycle 
Dim TimeStart As Double 'Start time £or DirectX8Event loop 
Dim TimeEnd As Double 'Ending time for DirectX8Event loop 
Dim AvgCtr As Long 'Counts number of events to average 
Dim AvgTime As Double 'Stores the average event cycle time 

'Set up Event variables for the Capture Buffer
 
Implements DirectXEvent8 'AllOWS DirectX Events
 
Dim hEvent(l) As Long 'Handle for DirectX Event
 
Dim EVNT(l) As DSBPOSITIONNOTIFY 'Notify position array
 
Dim Receiving As Boolean 'In Receive mode if true
 
Dim FirstPass As Boolean 'Denotes first pass from Start
 

Fig 5--Declaration of variables, bUffers, events and objects. This code is located in the General section of the module or form. 

88 q~ Sept/Oct 2002 13 



from the Microsoft Web site (see Note 
3). Once the driver and SDK are in
stalled, you will need to register the 
DirectX8 for Visual Basic Type Li
brary within the Visual Basic devel
opment environment. 

Ifyou are building the project from 
scratch, first create a Visual Basic 
project and name it "Sound."When the 
project loads, go to the Project Menu/ 
References, which loads the form 
shown in Fig 4. Scroll through Avail
able References until you locate the 

DirectX8 for Visual Basic Type Library 
and check the box. When you press 
"OK;' the library is registered. 

Define Variables, Buffers and 
DirectX Objects 

Name the form in the Sound project 
frmSound. In the General section of 
frmSound, you will need to declare all 
of the variables, buffers and DirectX 
objects that will be used in the driver 
interface. Fig 5 provides the code that 
is to be copied into the General sec

tion. All definitions are commented in 
the code and should be self-explana
tory when viewed in conjunction with 
the subroutine code. 

Create the Audio Devices 
We are now ready to create the 

DirectSound objects and set up the 
format of the capture and play buff
ers. Refer to the source code in Fig 6 
during the following discussion. 

The first step is to create the 
DirectSound and DirectSoundCapture 

'Set up the DirectSound Objects and the Capture and Play Buffers 
Sub CreateDevices() 

On Local Error Resume Next 

Set ds = dx.DirectSoundCreate(vbNullString) 'DirectSound object 
Set dsc = dx.DirectSoundCaptureCreate(vbNullString) 'DirectSound Capture 

'Check to se if Sound Card is properly installed 
If Err.Number <> 0 Then 

MsgBox "Unable to start DirectSound. Check proper sound card installation" 
End 

End If 

'Set the cooperative level to allow the Primary Buffer format to be set 
ds.SetCooperativeLevel Me.hWnd, DSSCL_PRIORITY 

'Set up format for capture buffer
 
With dscbd
 

With .fxFormat
 
.nFormatTag = WAVE FORMAT PCM
 
.nChannels = 2 'Stereo
 
.lSamplesPerSec = Fs 'Sampling rate in Hz
 
.nBitsPerSample = 16 '16 bit samples
 
.nBlockAlign = .nBitsPerSample / B * .nChannels
 
.lAvgBytesPerSec = .lSamplesPerSec * .nBlockAlign
 

End With 
.lFlags = DSCBCAPS_DEFAULT 
.lBufferBytes = (dscbd.fxFormat.nBlockAlign * CAPTURESIZE) 'Buffer Size 
CaptureBytes = .lBufferBytes \ 2 'Bytes for 1/2 of capture buffer 

End With 

Set dscb = dsc.CreateCaptureBuffer(dscbd) 'Create the capture buffer 

, Set up format for secondary playback buffer 
With dsbd 

.fxFormat = dscbd.fxFormat 

.lBufferBytes = dscbd.lBufferBytes * 2 'Play is 2X Capture Buffer Size 

.lFlags DSBCAPS_GLOBALFOCUS Or DSBCAPS GETCURRENTPOSITION2 
End With 

dspbd = dsbd.fxFormat 'Set Primary Buffer format
 
dspb.SetFormat dspbd 'to same as Secondary Buffer
 

Set dsb = ds.CreateSoundBuffer(dsbd) 'Create the secondary buffer 

End Sub 

Fig 6-Create the DirectX capture and playback devices. 

14 Sept/Oct 2002 q~ 89 



objects. We then check for an error to 
see if we have a compatible sound card 
installed. !fnot, an error message would 
be displayed to the user. Next, we set 
the cooperative level DSSCL_ PRIOR
ITY to allow the Primary Buffer format 
to be set to the same as that of the Sec
ondary Buffer. The code that follows sets 
up the DirectSoundCaptureBuffer-

Description format and creates the 
DirectSoundCaptureBuffer object. The 
format is set to 16-bit stereo at the sam
pling rate set by the constant Fs. 

Next, the DirectSoundBuffer
Description is set to the same format 
as the DirectSoundCaptureBuffer
Description. We then set the Primary 
Buffer format to that of the Second

ary Buffer before creating the 
DirectSoundBuffer object. 

Set the DirectX Events 
As discussed earlier, the 

DirectSoundCaptureBuffer is divided 
into two blocks so that we can read 
from one block while capturing to the 
other. To do so, we must know when 

'Set events for capture buffer notification at 0 and 1/2 
Sub SetEvents () 

hEvent(O) dX.CreateEvent(Me) 'Event handle for first half of buffer
 
hEvent(l) dx.CreateEvent(Me) 'Event handle for second half of buffer
 

'Buffer Event 0 sets Write at 50% of buffer 
EVNT(O) .hEventNotify = hEvent(O) 
EVNT(O) .lOffset = (dscbd.lBufferBytes \ 2) - l'Set event to first half of capture buffer 

'Buffer Event 1 Write at 100% of buffer 
EVNT(l) .hEventNotify = hEvent(l) 
EVNT(l) .lOffset = dscbd.lBufferBytes - 1 'Set Event to second half of capture buffer 

dscb.SetNotificationPositions 2, EVNT() 'Set number of notification positions to 2 

End	 Sub 

Fig 7-ereate the DlrectX events. 

'Create Devices and Set the DirectX8Events 
Private Sub Form_Load() 

CreateDevices 'Create DirectSound devices 
SetEvents 'Set up DirectX events 

End	 Sub 

'Shut everything down and close application 
Private Sub Form_unload(Cancel As Integer) 

If Receiving = True Then
 
dsb.Stop 'Stop playback
 
dscb.Stop 'Stop Capture
 

End If
 

Dim	 i As Integer 
For	 i = 0 To UBound(hEvent) 'Kill DirectX Events 

DoEvents 
If hEvent (i) Then dx.DestroyEvent hEvent(i) 

Next 

Set dx = Nothing 'Destroy DirectX objects 
Set ds = Nothing 
Set dsc = Nothing 
Set dsb = Nothing 
Set dscb = Nothing 

Unload Me 

End	 Sub 

Fig 8--Create and destroy the DirectSound Devices and events. 

QIE*s- Sept/Oct 2002 15 90 



DirectX has finished writing to a 
block. This is accomplished using the 
DirectXEvent8. Fig 7 provides the 
code necessary to set up the two events 
that occur when the IWrite cursor has 
reached 50% and 100% of the 
DirectSoundCaptureBuffer. 

We begin by creating the two event 
handles hEvent(O) and hEvent( 1). The 
code that follows creates a handle for 
each of the respective events and sets 
them to trigger after each half of the 
DirectSoundCaptureBuffer is filled. 
Finally, we set the number ofnotifica
tion positions to two and pass the 
name ofthe EVNTO event handle ar
ray to DirectX. 

The CreateDevices and SetEvents 
subroutines should be called from the 
Form_LoadO subroutine. The Form_ 
Unload subroutine must stop capture 
and playback and destroy all of the 
DirectX objects before shutting down. 
The code for loading and unloading is 
shown in Fig 8. 

Starting and Stopping 
Capture/Playback 

Fig 9 illustrates how to start and 
stop the DirectSoundCaptureBuffer. 
The dscb.Start DSCBSTART_ LOOP
ING command starts the Direct
SoundCaptureBuffer in a continuous 
circular loop. When it fills the first half 
of the buffer, it triggers the DirectX 
Event8 subroutine so that the data 
can be read, processed and sent to the 
DirectSoundBuffer. Note that the 
DirectSoundBufIer has not yet been 
started since we will quadruple buffer 
the output to prevent processor load
ing from causing gaps in the output. 
The FirstPass flag tells the event to 
start filling the DirectSoundBuffer for 
the first time before starting the buffer 
looping. 

Processing the Direct-XEventB 
Once we have started the Direct

SoundCaptureBuffer looping, the 
completion ofeach block will cause the 
DirectX Event8 code in Fig 10 to be 
executed. Ai:, we have noted, the events 
will occur when 50% and 100% ofthe 
buffer has been filled with data. Since 
the buffer is circular, it will begin 
again at the 0 location when the buffer 
is full to start the cycle allover again. 
Given a sampling rate of 44,100 Hz 
and 2048 samples per capture block, 
the block rate is calculated to be 
44,100/2048 = 21.53 blocks/s or one 
block every 46.4 ms. Since the quad 
buffer is filled before starting playback 
the total delay from input to output is 
4 x 46.4 ms = 185.6 ms. 

The DirectX Event8_DXCallback 
event passes the eventid as a variable. 

the code determines from the eventid, 
which half of the DirectSoundCapture
Buffer has just been filled. With that 
information, we can calculate the start 
ing address for reading each block from 
the DirectSoundCaptureBuffer to the 
inBufferO array with the dscb. 
ReadBuffer command. Next, we simply 
pass the inBufferO to the external DSP 
subroutine, which returns the pro
cessed data in the outBufferO array. 

Then we calculate the StartAddr 
and EndAddr for the next write loca
tion in the DirectSoundBuffer. Before 
writing to the buffer, we first check to 
make sure that we are not writing 
between the IWrite and IPlay cursors, 
which will cause portions ofthe buffer 
to be overwritten that have already 
been committed to the output. This 
will result in noise and distortion in 
the audio output. If an error occurs, 
the FirstPass flag is set to true and 
the pointers are reset to zero so that 
we flush the DirectSoundBuffer and 
start over. This effectively performs an 
automatic reset when the processor is 
overloaded, typically because ofgraph
ics intensive applications running 
alongside the SDR application. 

If there are no overwrite errors, we 
write the outBufferO array that was 
returned from the DSP routine to the 
next StartAddr to EndAddr in the 
DirectSoundBuffer. Important note: In 
the sample code, the DSP subroutine 
call is commented out and the 
inBufferO array is passed directly to 
the DirectSoundBuffer for testing of 
the code. When the FirstPass flag is 
set to True, we capture and write four 
data blocks before starting playback 
looping with the .SetCurrentPosition 
o and .Play DSBPLAY_LOOPING 
commands. 

The subroutine calls to StartTimer 
and StopTimer allow the average com
putational time ofthe event loop to be 
displayed in the immediate window. 
This is useful in measuring the effi

'Turn Capture/Playback On 
Private Sub cmdOn Click() 

dscb.Start DSCBSTART_LOOPING 
Receiving True 
FirstPass = True 

Start 
OutPtr = 0 

End Sub 

'Turn Capture/playback Off 
Private Sub cmdOff_Click() 

Receiving False 
FirstPass = False 
dscb.Stop 
dsb.Stop 

End Sub 

ciency ofthe DSP subroutine code that 
is called from the event. In normal 
operation, these subroutine calls 
should be commented out. 

Parsing the Stereo Buffer 
into I and Q Signals 

One more step that is required to 
use the captured signal in the DSP 
subroutine is to separate or parse the 
left and right channel data into the I 
and Q signals, respectively. This can 
be accomplished using the code in 
Fig 11. In 16-bit stereo, the left and 
right channels are interleaved in the 
inBufferO and outBufferO. The code 
simply copies the alternating 16-bit 
integer values to the RealIn(», (same 
as 1) and ImagInO, (same as Q) buff
ers respectively. Now we are ready to 
perform the magic of digital signal 
processing that we will discuss in the 
next article ofthe series. 

Testing the Driver 

To test the driver, connect an audio 
generator--or any other audio device, 
such as a receiver-to the line input of 
the sound card. Be sure to mute line
in on the mixer control panel so that 
you will not hear the audio directly 
through the operating system. You can 
open the mixer by double clicking on 
the speaker icon in the lower right cor
ner of your Windows screen. It is also 
accessible through the Control Panel. 

Now run the Sound application and 
press the On button. You should hear 
the audio playing through the driver. 
It will be delayed about 185 ms from 
the incoming audio because ofthe qua
druple buffering. You can turn the 
mute control on the line-in mixer on 
and off to test the delay. It should 
sound like an echo. Ifso, you know that 
everything is operating properly. 

Coming Up Next 

In the next article, we will discuss 
in detail the DSP code that provides 

'Start Capture Looping 
'Set flag to receive mode 
'This is the first pass after 

'Starts writing to first buffer 

'Reset Receiving flag 
'Reset FirstPass flag 
'Stop Capture Loop 
'Stop Playback Loop 

The case statement at the beginning of Fig 9-Start and stop the capture/playback buffers.
 

16 Sept/Oct 2002 q~ 91
 



'Process the Capture events, call DSP routines, and output to Secondary Play Buffer 
Private Sub DirectXEvent8 DXCallback (ByVal eventid As Long) 

StartTimer 'Save loop start time 

Select Case eventid 'Determine which Capture Block is ready

Case hEvent(O)
 

Inptr =	 0 'First half of Capture Buffer
 
Case hEvent(l)
 

Inptr =	 I 'Second half of Capture Buffer
 
End Select
 

StartAddr = Inptr * CaptureBytes 'Capture buffer starting address 

'Read from DirectX circular Capture Buffer to inBuffer
 
dscb.ReadBuffer StartAddr, CaptureBytes, inBuffer(O) , DSCBLOCK_DEFAULT
 

'DSP Modulation/Demodulation - NOTE: THIS IS WHERE THE DSP CODE IS CALLED
 
DSP inBuffer, outBuffer
 

StartAddr = Outptr * CaptureBytes 'Play buffer starting address
 
EndAddr = OutPtr + CaptureBytes - I 'Play buffer ending address
 

with dsb 'Reference DirectSoundBuffer 

.GetCurrentPosition PlyCurs 'Get current Play position 

'If true the write is overlapping the IWrite cursor due to processor loading 
If PlyCurs.IWrite >= StartAddr 

And	 PlyCurs.IWrite <= EndAddr Then
 
FirstPass = True 'Restart play buffer
 
Outptr = 0
 
StartAddr = 0
 

End	 If 

'If true the write is overlapping the IPlay cursor due to processor loading 
If PlyCurs.IPlay >= StartAddr _ 

And	 PlyCurs.IPlay <= EndAddr Then
 
FirstPass = True 'Restart play buffer
 
Outptr = 0
 
StartAddr = 0
 

End	 If 

'Write outBuffer to DirectX circular Secondary Buffer. NOTE: writing inBuffer causes 
direct pass through. Replace 

'with outBuffer below to when using DSP subroutine for modulation/demodulation 
.WriteBuffer StartAddr, CaptureBytes, inBuffer(O) , DSBLOCK_DEFAULT 

Outptr = IIf(OutPtr >= 3, 0, Outptr + 1) 'Counts 0 to 3 

If FirstPass = True Then 'On FirstPass wait 4 counts before starting 
Pass = Pass + 1 'the Secondary play buffer looping at 0 
If Pass = 3 Then 'This puts the Play buffer three Capture cycles 

FirstPass = False 'after the current one 
Pass = 0 'Reset the Pass counter 
.SetCurrentPosition 0 'Set playback position to zero 
.Play DSBPLAY LOOPING 'Start playback looping 

End If
 
End If
 

End	 With 

StopTimer	 'Display average loop time in immediate window 

End Sub	 Fig 1O-Process the DirectXEvent8 event. Note that the example code passe~ t~e inBu!ferO directly to th~ D!rectSoundBuffer 
without processing. The DSP subroutine call has been commented out for this Illustration so that the ~udlo mput to the sound 
card will be passed directly to the audio output with a 185 ms delay. Destroy objects and events on eXIt. 

92	 qE*-o- Sept/Oct 2002 17 



Erase Realln, Imagln 

For	 8 = 0 To CAPTURE8IZE - 1 8tep 2 'Copy I to Realln and Q to Imagln 
Realln (8 \ 2) inBuffer (8) 
Imagln(8 \ 2) = inBuffer(8 + 1) 

Next 8 

Fig 11-Code for parsing the stereo inBufferO into in-phase and quadrature signals. This code must be imbedded into the DSP 
subroutine. 

modulation and demodulation of SSB 
signals. Included will be source code 
for implementing ultra-high-perfor
mance variable band-pass filtering in 
the frequency domain, offset baseband 
IF processing and digital AGe. 
Notes 
'G. Youngblood, AC50G, "A Software

Defined Radio for the Masses: Part 1," 
OEX, July/Aug 2002, pp 13-21. 

21nformation on both DirectX and Windows 
Multimedia programming can be accessed 
on the Microsoft Developer Network (MSDN) 
Web site at www.msdn.microsoft.com/li
brary. To download the DirectX Software 
Development Kit go to msdn.microsoft. 
corn/downloads/ and click on "Graphics and 
Multimedia" in the left-hand navigation win
dow. Next click on "DirectX" and then 
"DirectX 8.1" (or a later version if available). 

The DirectX runtime driver may be down 3you can download this package from the 
loaded from www.microsoft.com/win ARRL Web www.arrl.org/qexfiles/. Look 
dows/directxldownloads/default.asp. for 0902Youngblood.zip. DO 

18 Sept/Oct 2002 q~	 93 


