
Management of TNCs by means of the Simple Network
Management Protocol *

H. Hmida (VA2HLH) and M. Barbeau (VE2BPM)
Dkpartement de mathematiques et d’informatique

Universit6 de Sherbrooke
Sherbrooke (Qudbec), CANADA, JlK 2Rl

{hmida,barbeau)@dmi.usherb.ca

Abstract

This article deals with the application of a network management fram.ework, called Sa’na-
pie Network Munagement Protocol (SNMP), to manage a particular type of network devices
named Terminal Node Controller (TNC). TNCs are widely used in the amateur packet ra-
dio community. We present new tools based on SNMP for remote management of TNCs. A
Management Information Base (MIB) has been created for the TNCs parameters we manage
in KISS mode. The MIB is implemented under the Linus: operating system and uses the
CMU-SNMP package. We implemented also a new command to manage simultaneously and
remotely several TNC parameters.

Keywords: Network management, terminal node controller, management information base,
Linux.

1 Introduction

The number of users accessing amateur packet radio is growing from day to day. Managers of
telecommunications equipment are called to pay more attention to these pieces of equipment in
order to exploit them in a better way. So far, managers were obliged to be close to the packet radio
devices they wish to manage and to control. The Simple Network Management Protocol (SNMP)
[2] is a framework that permits remote management and control of network devices. With a simple
design, SNMP has the capability to manage various types of network technologies. For example,
SNMP is used for the management of the Internet. The concerns of this paper is the use of SNMP to
manage and control wireless networks. In particular, we are interested in the application of SNMP
for the control and management of a device type called TNC [3]. A TNC is an important element

*The research described in this paper was supported in part by the Natural Sciences and Engineering Research
Council of Canada (NSERC) and the Fonds pour la formation de chercheurs et l’aide B la recherche (FCAR).

57

of networks of the amateur packet radio community. It is a device placed between a transceiver and
a computer implementing a medium access protocol and a data link control protocol.

Classically, management of a TNC can be done using two types of tools, namely, terminal
emulation software and utility programs [5]. These tools are helpful as long as the computer on
which they run is directly connected to the TNC with a short cable. In other words, these tools are
inadequate for remote management of TNCs through networks. The goal of our work is to develop
and provide new tools for remote management of TNCs. These types of tools are interesting since
the manager that uses them is not obliged to be close to the TNC he wants to manage.

The tools that we propose are based on SNMP. In SNMP, the collection of manageable param eters
of a device are logically seen as a data base called a management information base (MIB) [4]. Data
elements in a MIB are called objects which are abstractions of real parameters of a device. A MIB
offers different services in order to read and modify the values of those objects. SNMP is a protocol
that allows use of these services remotely through a network. In order to define the structure of ob-
jects in a MIB, the SNMP framework defines a notation called structure of management information

(SW PI PI*
In our work, we have identified the TNC parameters that can be managed in KISS mode and

defined a MIB for them using the SMI syntax. This MIB is implemented under the Linux operating
system and uses the CMU-SNMP package [6]. In addition to the commands coming with this
package, we implemented a new command allowing to manage simultaneously and remotely different
parameters of a TNC. Those commands access the TNC via SNMP and the MIB we created.

The rest of this paper is structured as follows. Section 2 deals with the basic aspects of SNMP.
Section 3 deals with the solution we developed. First, it presents the parameters we manage and the
corresponding objects that form our MIB. Second, it explains how to access, read, and set the MIB
objects. Finally, it describes the relation between the TNC, the MIB, and how SNMP physically
sets the TNC parameters. We conclude with Section 4.

2 Review of SNMP

SNMP was designed as an application-level protocol that is part of the TCP/IP protocol suite
(see Figure 1). Four main concepts come with SNMP: management station, agent, management
information base, and management protocol. A management station has a set of management
applications and an interface by which the network manager may monitor and control a network. An
agent responds to requests for information and requests for actions from the management station and
may asynchronously provide the management station with important ‘but unsolicited information.
It provides the information by accessing its local MIB and retrieving the requested object values.
The MIB is a database containing a collection of objects. Each object refers to a network-resource to
be managed and is accessed via a data variable. The management station performs the monitoring
function by retrieving values or MIB objects. It can change also values of specific variables. Finally,
a network management protocol links the management station and agent. The one used for the
management of TCP/IP networks is SNMP.

SNMP is implemented on top of the user datagram protocol (UDP), internet protocol (IP),
and the relevant network-dependent protocol (e.g., Ethernet, AX.25). SNMP provides a message
exchange mechanism to retrieve and set object values at the agent and notify the management
station of significant events. From a management station, three types of SNMP messages are

58

issued on behalf of a management application: GetRequest, GetNextRequest, and SetRequest. A
GetRequest is issued if the management application knows precisely the object it wants to read.
A GetNextRequest is issued if the management application wants to read the value of an object
that is successor of known object. The GetRequest and the GetNextRequest can only read objects.
SetRequest, however, may create or modify objects. These messages are acknowledged by the agent
as a GetResponse messages, which are passed up to the management application. In addition, an
agent may issue trap messages in response to events that affect the MIB and underlying managed
resources.

SNMP Management Station
1

/ 5

Man8gement Appliutiofl Applicatipn
manages obpcts.------ ---- ----

SNMPMesspeed-----me---m- -,

UDP

IP

Networkdependent protocol

SNMP Agent

SNMP Agent

Nexwarkdepenbt promu

Figure 1: SNMP architecture [l].

3 Development of a solution

In this section, we present a solution we wish propose to solve remote management and control of
wireless network devices. The tools we propose are developed under the Linux operating system
[8]. Linux is chosen because it has a certain degree of security (like Unix) concerning the access to
the system, it supports communication over the AX.25 protocol, and it supports network manage-
ment. One of the most free popular SNMP packages is CMU-SNMP. It was first designed by the
Carnegie Mellon University (http://www.cmu.edu) and then has been ported to Linux by Juergen
Schoenwaelder (schoenw@gaertner.de) and Erik Schoenfelder (schoenfr@gaertner.de). This package
is fully compliant with the SNMPvl standard and includes, in addition, some of the new features
of SNMPv2. The distribution contains some manager tools that permit, in a command line stvle,
to send requests to devices running SNMP agents. It also contains a SNMP agent program, Ude-
signed to run under Linux, that provides the manager running on the network (or the same system)
information about the status of the interfaces, routing table, uptime, etc. [7]

59

3.1 Managed parameters and their corresponding objects

In a MIB, objects are organized into groups. Since we are in an experirnental stage, we include our
new objects under a group called experimental group. Let’s now have a look at the objects of a
TNC in KISS mode that can be managed and included into a MIB. The KISS mode has a limited
number of manageable parameters. They are the following:

l port: the port that is being configured

e fullduplex: sets the TNC into either full duplex or half duplex

l hardware: hardware specific parameters

l txtail: the TX Tail time in milliseconds

l persist: the persist value in milliseconds

l slottime: the slottime in milliseconds

l txdelay: the TX Delay in milliseconds

These TNC parameters, in KISS mode, can be set but their value cannot be retrieved from the
TNC. The MIB that we developed allows the management application to get the values given to
the parameters. We associated to each TNC parameter a MIB object1 that reflects its value. For
example, the definition of the object associated to the parameter txtail is illustrated in Figure 2.
The notation is SMI.

tncTxTai1 OBJECT-TYPE
SYNTAX INTEGER (1..127)
MAX-ACCESS read-write
STATUS mandatory
DESCRIPTION

“Sets the TX Tail time in milliseconds. This value must be
a multiple of 10.”

::= (tncControl4)

Figure 2: Definition of the tncTxTai1 object.

Figure 2 defines an object called tncTxTai1 situated under the group tnccontrol. The value 4
means that our object is the number four in the tnccontrol group (Figure 3). Also, the definition
tells that the value of the object is of type INTEGER and can vary between 0 and 127. The label
MAX-ACCESS defines the way an instance of the object can be accessed (via SNMP or other
protocols). In our case, the object is readable and writable (setable). Generally, it can be one of
the following: read-only, read-write, write-only, or not-accessible.

The STATUS clause indicates the implementation support required for this object. Support can
be one of the following: mandatory (the object definition is valid and implementation is required
for conformance), current (the object definition is valid), optional (the object definition is valid,

60

- tlIcPort(1)
, b
. 1

- tncFullDuplex (2)

- tncHardware (3)

- tncTxTail(4)

,

- -Persist (5)

- tncSlotTime (6)
.

I

Figure 3: TNC sub-tree.

however implementation is not required for conformance), deprecated (the object definition is valid
in limited circumstances, but has been replaced by another), or obsolete (managed nodes need no
longer to implement this object). A valid definition has the following properties: it is well conceived
(precise, unambiguous, complete, and applicable across a wide scope) and relevant (useful and has
been used for implementation). With SMIvl, the value current is not used. With SMIv2, value
optional is eliminated and the value mandato y is replaced by current. The complete SMI definition
of all the objects corresponding to the parameters that we manage is given in Appendix 4.

3 . 2 Object access

CMU-SNMP provides three commands for retrieving the values of objects. The first is the snmpwallc
command. It has three parameters:

a hostname: corresponds to the host name containing the MIB. It can be either localhost, if we
are addressing our local machine MIB, or the explicit name of a distant host in a textual form
(e.g., lolly2.dmi.usherb.ca) or in a numerical form (e.g., 132.210.48.188).

l community name: is one of the community names known by the addressed host. In our case

61

we use public.

l object-ID: is the identifier of the group of objects to be walked. The identifier can be either
in a textual form (e.g., system) or in a numerical one (e.g., .1.3.6.1.2.1.1) or a combination of
the two (e.g., J.3.6.1.2.l.system).

To discover, for instance, all the objects under the tnccontrol group, we have just to type:

snmpwa.lk localhost public .1.3.6.1.3.4711

a normal response is:

internetExperim.tncControl.tncPort.0 = 1
internetExperim.tncControl.tncFullDuplex.0 = 1
internetExperim.tncControl.tncHardware.0 = 3
internetExperim.tncControl.tncTxTail.0 = 20
internetExperim.tncControl.tncPersist.0 = 10
internetExperim.tncControl.tncSlotTime.0 = 10
internetExperim.tncControl.tncTxDelay.0 = 10

Another way to obtain the values of these objects is to use the snmpget command. To do so,
we have to know the exact name of an object. For example, to get the value of the tncPort object
we can use the following command:

snmpget localhost public
.1.3.6.1.3.47ll.tncControl.tncPort.O

a normal returned result is:

internetExperim.tncControl.tncPort.0 = 1

To know the value of the object next to tncPort, we can apply the snmpgetnext command in the
following way:

snmpgetnext localhost public
.1.3.6.1.3.47ll.tncControl.tncPort.O

a normal response is:

internetExperim.tncControl.tncFullDuplex.0 = 1

This way, we can discover the value of any object within the MIB. To change the value of
any writable object, we have just to apply the snmpset command. In addition to the hostname,
community name, and object-ID, this command needs the type of the object and the new value to
be assigned to it. The type
STRING), n (NULLOBJ), o

snmpset localhost public
internetExperim.tncControl.tncSlotTime.0 i 20

The snmpset command can set only one parameter at a time. To present to the user a better
service, we developed a new command, called snmpax%et, that permits to set several parameters
in a single command line. The syntax of this new command is the following:

snmpax25set hostname community object [-p port][-f Oll][-1 txtail][-r persist][-s slot][-t txt]

Once the parameters passed to the snmpax25set are verified, snmpset is called for each one of

62

3 . 3 Application implementation

Hereafter, we discuss how this application is implemented and how someone can write applications
similar to the one we are presenting. We explain in the following lines the C code of the main
functions we wrote for this application and the key files necessary for its implementation.

Installation of the CMU-SNMP package for Linux is required. The application uses basically
the following three files:

1. mib.txt: contains the SMI definition of the MIB objects.

2. snmp-vars. h: contains function, constant, and data structure declarations.

3. snmp-vars.c: contains the code of the functions necessary to access, read, and set MIB objects.

First of all, the new objects to manage must be added in the appropriate object-group of the
MIB. In our case, they are added to the group tnccontrol (a subgroup of internetExperim, which
is itself a subgroup of experimental) (see Figure 3). The part of the file mib. txt defining the group
tnccontrol is given in Appendix A. The file mib.txt also contains predefined standard managed
objects. Next, the tnccontrol group need to be registered in order to be known by the agent. The
function snmp,vars,init in the file snmp,vars.c does registration of managed objects. Here are the
lines we added to the snmp-vurs-init function:

#ifdef linux
mib,register (

tnc,id-base,
sizeof(tnc,id,base) / sizeof(oid), /*num. of obj. id in tnc,id,base*/
experimental-variables,
sizeof(experimental,variables)/sizeof(*experimental-variables), /*num. of vars. in the group*/
sizeof(*experimental,variables)); /*size of a variable description*/

tnc,id,buse is a vector that defines the identifier of the group internetExperim (see Appendix A):

#define INTERNET-EXPERIMENTAL 1, 3, 6, 1, 3
static oid tnc,id,base[] =
t
INTERNET-EXPERIMENTAL, 4711

3 ;

experimentaLvariables is an array that defines all the tncContro2 group objects to manage, their
type, access mode, management function, and index under the internetExperim group. It is globally
defined as follows:

struct variable2 experimental,variables[]=(
{TNCPORT, INTEGER, RWRITE, var,experimental, 2, (1, l)),
(TNCFULLDUPLEX, INTEGER, RWRITE, var-experimental, 2, (1, 233,
(TNCHARDWARE, INTEGER, RWRITE, var,experimental, 2, (1, 333,
(TNCTXTAIL, INTEGER, RWRITE, var-experimental, 2, (1, 433,
(TNCPERSIST, INTEGER, RWRITE, var-experimental, 2, {l, 533,
(TNCSLOTTIME, INTEGER, RWRITE, var,experimental, 2, (1, 633,
(TNCTXDELAY, INTEGER, RWRITE, var-experimental, 2, (1, 7))

3 ;

TNCPORT, TNCFULLDUPLEX, TNCHARDWARE, TNCTXTAIL, TNCPERSIST, TNCSLOT-
TIME, and TNCTXDELAY are defined, in the snmp,vars.h file, as follows:

63

#define TNCPORT 1
#define TNCFULLDUPLEX 2
#define TNCHARDWARE 3
#define TNCTXTAIL 4
#define TNCPERSIST 5
#define TNCSLOTTIME 6
#define TNCTXDELAY 7

Now, we define new functions that access, read, and set the object values. The main function is
vur,experimental. It is called for each object and is partially defined as:

u-char *var_experimental(...)
<

/* Declaration of local variables */
. . .

/* Memory allocation for an object */
. . .

/* switch to object currently handled */
switch (...>(

case TNCPORT:
*write-method = write,snmp,tnc,Port; (1)
long-return = snmp,tnc,port; (2)
break;

/* other cases */
. . .

3
return

3

There is a case for each object we are registering. For example, let us consider the case TNC-
PORT. There are two actions. First, the function responsible for access to the object is regis-
tered, that is write,snmp,tnc,Port (1). Second, the initial value of the object is registered, that is
snmp,tnc,port (2). snmp,tnc-port is a memory variable that we define (in file snmp_vars.c) and that
stores the current value of the managed object.

Function write,snmp,tnc,Port does the following:

static int write-snmp-tnc,Port (...>
f

/* Declaration of local variables */
. . .

/* Assert that the parameter is of type INTEGER */
. . .

/* Assert that the parameter value is zero */
. . .

if (action == COMMIT) (
snmp,tnc,port = intval;
execv("/usr/sbin/kissparms", argv);

1
return SNMP,ERR,NOERROR;

3

If the action performed on the object is a set operation (condition action == COMMIT is
true), then the global variable snmp-tnc-port receives the new value of the object (intvul) and the
kisspurms program is called to physically set the TNC parameter.

If the action performed on the object is a get operation, then the agent retrieves and returns
the value in the memory variable snmp,tnc,port.

4 Conclusion

In this paper, we have presented a method to manage a particular type of network devices, named
TNC, by means of a network management framework called SNMP. Precisely, we have implemented
a MIB containing the parameters we intend to manage (Section 3.1). Those parameters are seen
as objects that can be read and set using simple commands (Section 3.2) To facilitate the TNC
management, we have implemented a new command that sets remotely and simultaneously several
parameters. In Section 3.3, we have explained how we used the CMU-SNMP package to implement
our application. ’

Two problems were uncovered by this work. First, we noted that in Kiss mode, there are no ways
to read and verify the actual values of TNC parameters. Consequently, the strength of the solution
we propose depends on the reliability of the kisspurms program we are applying to physically set
TNC parameters. Second, there may be an inconsistency between MIB memory variables and actual
TNC parameters. In fact, if the agent computer shuts down then the content of memory variables
and updates of those variables are lost. When the computer reboots, these memory variables take
default values which do not necessarily correspond to the real values in the TNC.

Actually, there are two possible solutions to this problem. First, values of memory variables
are maintained in files. Updates are both reflected in the memory variables and in the file. When
the system reboots, initial values are taken from that file. Second, when get requests are received,
instead of reading values from memory variables, a procedure directly accesses the values in the
TNC. The second solution is actually not feasible with the actual definition of the Kiss protocol.

lAcopyoftheCc ode of this project can be found at http://www.dmi.usherb.ca/-hmida/project.html.

65

References

PI

PI

PI

PI

PI

PI

VI

PI

William Stallings, “SNMP, SNMPv2, and CMIP. The Practical Guide to Network-Management
Standards”, Addison Wesley, 1993.

Marshall T. Rose, “The Simple Book. An Introduction to Internet Management”, Prentice Hall,
Second Edition, 1994.

Philip R. Karn, Harold E. Price, and Robert J. Diersing, “Packet Radio in the Amateur Service”,
IEEE journal on selected areas in communications, Vol. SAC-3, NO 3, May 1985, pp. 431-439.

David Perkins and Evan McGinnis, ” Understanding SNMP MIBs” , Prentice Hall, 1997.

Terry Dawson, “Linux AX25-HO WTO, Amateur Radio”,
http://www.sunsite.unc.edu/mdw/HOWTO/AX25-HOWTO.html

Erik Schijnfelder, “Linux CMU SNMP Project”,
http://www.gaertner.de/snmp/

David Guerrero, “Network Management & Monitoring with Linu?‘, Linux Journal, June 1997,
pp. 36-44.

” Linux Home Page”,
http://www.linux.org

Appendix A: Definition of the tnccontrol group and its ob-
jects

experimental
OBJECT IDENTIFIER ::= { internet 3 3

internetExperim
OBJECT IDENTIFIER ::= (experimental 4711)

tncContro1
OBJECT IDENTIFIER ::= (internetExperim 1)

tncPort OBJECT-TYPE
SYNTAX INTEGER (1..127)
MAX-ACCESS read-write
STATUS current
DESCRIPTION

"The port name that is being configured."
::= (tncContro1 1 3

tncFullDuplex OBJECT-TYPE
SYNTAX INTEGER (1..127)
MAX-ACCESS read-write
STATUS current
DESCRIPTION

"The TNC can be set into either full duplex

66

or half duplex."
::= (tncContro1 2 3

tncHardware OBJECT-TYPE
SYNTAX INTEGER (L.127)
MAX-ACCESS read-write
STATUS current
DESCRIPTION

"This is used to set the hardware specific
parameters."

::= (tncContro1 3 3

tncTxTai1 OBJECT-TYPE
SYNTAX INTEGER (1..127)
MAX-ACCESS read-write
STATUS current
DESCRIPTION

"This is used to set the TX Tail time in
milliseconds.
Only values like 10, 20, etc are used."

::= (tncContro1 4)

tncpersist OBJECT-TYPE
SYNTAX INTEGER (1..127)
MAX-ACCESS read-write
STATUS current
DESCRIPTION

"This is used to set the persist value.
This parameter is scaled to the range
0 to 255."

::= (tncContro1 5)

tncSlotTime OBJECT-TYPE
SYNTAX INTEGER (1..127)
MAX-ACCESS read-write
STATUS current
DESCRIPTION

"This is used to set the slottime time
in milliseconds. Only values like 10,
20, etc are used."

::= (tncContro1 6)

tncTxDelay OBJECT-TYPE
SYNTAX INTEGER (1..127)
MAX-ACCESS read-write
STATUS current
DESCRIPTION

"This is used to set the TX Delay time
in milliseconds. Only values like 10,
20, etc are used."

::= (tncContro1 7)

67

