G-TOR™: The Protocol

by Kantronics Staff
Mike Huslig, Phil Anderson, Karl Medcalf, and Glenn Prescott

Foreword

The G-TOR data communications protocol is an
innovation of the technical staff of Kantronics
Co., Inc. It was introduced as an inexpensive
means of improving digital communications

in the HF radio bands. A hybrid ARQ scheme,
used in combination with an invertible, half-
rate Golay forward error correcting code, is the
single-most essential element in the protocol.

The purpose of this document is to present

a detailed description of the G-TOR protocol.
It is assumed that the reader is familiar with
ARQ systems such as AMTOR, Pactor, and
Packet; terms such as MASTER, SLAVE, ISS,
IRS as they pertain to protocols; and binary,
HEX and C-language number notations. Oper-
ation, performance objectives, and performance
results of systems using this protocol are not
discussed; these aspects of G-TOR have been
covered widely in trade publications.

The description is organized in sections as
follows: a general overview, including term
definitions and initialization of parameters;
timing; definition and usage of data, control,
BK, and connect and disconnect frames; data
formats; speed change procedures; the Huff-
man table; and Golay coding and data inter-
leaving. Appendices containing flow charts,
a Huffman decoding tree, and a C language
routine for Golay encoding/decoding follow
the protocol description.

General

The system which originally transmits a
G-TOR connect request is called the Master,

and the system which responds to the trans-
mitted connect request is called the Slave.

The system currently sending data blocks is
called the Information Sending Station (ISS),
and the system receiving these data blocks is
called the Information Receiving Station (IRS).
During a connection, tthe Master is always the
Master and the Slave is always a slave, but
either system may be the ISS while the other
is the IRS. Immediately after a connection, the
Master is the ISS while the Slave is the IRS.
The IRS will send a Control Signal #1 (CS1)
immediately after connection or turnaround to
indicate it is ready for data; it sets an internal
flag (Send_CS_flag) to CS1. The IRS also sets
its internal error count to 0, its blocks_received
count to 0, and its Last Block number to O.
When the ISS receives the CS1, it sets an
internal flag (Expecting CS_flag) to CS2 and
Block_number to 1.

The Master and the Slave both have an
internal flag (Golay_flag) which is comple-
mented every 2.4 second cycle. During the
connect process, this flag is set to be the same
in both systems. Whenever the ISS receives

a proper Acknowledgment (the CS1 the first
time around), it forms a new frame of data
(Real_Data). This new data frame is also fed
through the Golay encoder to form a frame

of parity bits (Golay_Data). The ISS sets an
internal error count to 0. Depending on the
state of the Golay_flag in the ISS, the ISS will
choose the Real_Data frame or the Golay_Data
frame to transmit. The Golay_flag in the ISS is
then complemented for the next cycle. Which-
ever frame is chosen, that frame is then inter-
leaved and transmitted.

49

Figure 1

t3
MASTER: roo !
s DATA FRAME SENT " ack
- 2.40 sec >

SAES) [T et [AGK

tl is radio wave propagation time

t2 is slave acknowledgment delay which includes processing time and transmitter turn-on delay;
t2 is constant while connected, even when the Slave is the ISS

t3 is determined by the Master during initial synchronization and should vary only slightly during
the connection

MASTER: |- - - data frame rece ved - ! T
(IRS) T data frame received ~ " " - | ACK o
i |
I t 3
SLAVE: r ok |
159) | DATA FRAME SENT | _ack
12
Changeover timing
2.40 sec

. r-—=-=-=---=-TTTs=sTmT 77 [

MASTER: | DATAn FRAME SENT 1083~ ___ _daa0 rovd | | CS1 | datal
I o |
___________ - pemem
SLAVE: '~ Gataframercvd - | | CS3- DATAO SENT | cs1 | | DATA1
1] 2 ——192sec—— 2]

50

The IRS is expecting to receive a frame during
a certain time period in the 2.4 second cycle.
When it has received the frame, the IRS then
increments its Blocks received count and de-
interleaves the block. If the ISS Golay_flag is
set, a copy of the block is saved as Golay_Data;
the block is then fed through the Golay encoder
to generate the original data. If the ISS
Golay_flag is clear, a copy of the block is saved
as Real_Data. The Golay_flag is then comple-
mented. If the CRC of the block is correct, the
IRS has received the data correctly. If the

CRC is not correct, the IRS checks to see if
the Blocks_received counter is greater than 1,
indicating it has received a copy of both the
Real_Data and the Golay_Data. If the IRS has
a copy of both, it will try to regenerate the orig-
inal data using Golay error correction. If the
CRC is still incorrect, the IRS error count is
incremented. If the error count is greater

than a set maximum number of errors, the
IRS will go back into a standby mode; other-
wise, to indicate failure, the IRS will re-send
the same Control Signal it sent in the last
cycle. If the CRC of the received block or the
error corrected block is correct, the IRS clears
its Blocks received count and compares the
Block_number in the received frame with

the Last_Block number it correctly received.

If they are the same, then the received data
frame is the same, indicating most likely

that the ISS has not correctly received the

last Control Signal sent by the IRS; the IRS
then re-sends the last CS. If the Block_number
is one greater than the Last_Block number
received, then this block is the next data
expected; the IRS now sets its Last, Block
number to the Block number received and
prints the data received; the IRS error count
is set to 0; the Send_CS_flag is complemented
and the appropriate Control Signal is trans-
mitted. If the Block number is otherwise, then
some protocol error has occurred, and data

has been lost.

The ISS is expecting to receive an acknowledg-
ment during a certain time period in the 2.4
second cycle. If the ISS receives a CS2 when

it was expecting a CS2, or it receives a CS1
when it was expecting a CS1, the ISS considers
the sent data to be properly acknowledged.
The Expecting_CS_flag is complemented, the

Block_number is incremented, and the ISS
fetches new data to be transmitted. Otherwise,
the data has not been acknowledged, or the
ISS has not received the acknowledgment.
The ISS then increments its error count, and
if the error count is less than some set maxi-
mum, the ISS will try to send the data again.
Timing

The basic G-TOR cycle is very similar to
AMTOR and PACTOR. The ISS sends long
data frames which are acknowledged by

the IRS with shorter control signals (CS).

The total cycle duration is 2.4 seconds. The
data frames are 1.92 seconds long and the
control signals are 0.16 seconds long. 0.32
seconds remain in the cycle for radio switch-
ing, wave propagation, and the necessary
computing for both Master and Slave systems.
The Master controls tlhe total cycle time. The
Slave adjusts its receive window to follow the
Master’s transmissions, but since the Slave’s
transmissions are always fixed in relation to
its receive window, the Slave’s transmissions
follow the Master’s transmissions. The Master
only corrects its receive window. Refer to
Figure 1.

Data Frame Structure

The frame structure for a typical G-TOR data
frame (before interleaving) is shown in Figure
2. The data frame is 1.92 seconds in duration.
Depending on channel conditions, data can be
sent at 100,200, or 300 baud. Each data frame
is composed of either 72 bytes (at 300 baud), 48
bytes (at 200 baud), or 24 bytes (at 100 baud).

Figure 2
G-TOR Frame Structure Before Interleaving
Status CRC
Data (1 byte) | (2 bytes)
69 data bytes @ 300 baud \
45 data bytes@ 200 baud \
21 data bytes@ 100 baud \\

- N\

-

765432107

51

A single byte near the end of the frame is
devoted to command and status functions.
The status byte is interpreted as follows:

* status bits 7 & 6:
Command
00 — data
01 - change-over request
10 - disconnect
11 - connect

. status bits 5 & 4:
Unused
00 - reserved

. status bits 3 & 2:
Compression

00 = none

01 — Huffman

10 — Swapped Huffman
Il-reserved

. status bits 1&0:
Block Number modulo 4

The last 2 bytes of the frame contain the CRC.
Like Packet and Pact-or, the CRC is computed
using the same CCITT standard, starting at
the first byte of a data, connect, or disconnect
frame and starting at the third byte of the BK
frame. However, the two bytes of the CRC are
swapped before being put in the frame.

Control Signal Structure

The G-TOR Control Signals (CS) are 2 bytes
(16 bits) long and are always sent at 100 baud.
Each byte of the Control Signal is sent LSB
first. Control Signals are used to acknowledge
correct or incorrect receipt of frames from the
information sending station. They are also
used to request changes in transmission speed
and to initiate a change-over in information
flow direction. There are five different G-TOR
Control Signals:

Signal-Function Code Bit pattern in time
CS1-Data ack/nack F11A 1000111101011000
CS2-Data ack/nack 6B62 1101011001000110

CS3-Change-over

command 5E13 0111101011001000

52

CS4-Speed change 4D3C 1011001000111100
CS5-Speed change 8957 1001000111101010

The CS codes are composed of multiple cyclic
shifts of a single 15-bit pseudo-random noise
(PN) sequence (an extra ‘0’ bit is appended to
the sequence for balance, so the total CS word
length is 16). A pseudo-random noise sequence
is used because PN sequences have powerful
mathematical correlation and distance prop-
erties which facilitate the identification of the
appropriate CS code, even in the presence of
noise and interference. Each CS has a mutual
Hamming distance of 8.

BK Frame Structure

The change-over frame is shown in Figure 3.
This frame is always transmitted at 100 baud
and is never interleaved. It is essentially a
combination of the CS3 Control Signal and

a shortened data frame. Each byte of the BK
frame is sent LSB first.

Figure 3
G-TOR Changeover Frame Structure
1.92 sec 'I
cs3 Data Status CRC

(2 bytes) (19 bytes) (1 byte)| (2 bytes)

Formation of Connect and Disconnect
Frames

Connect and Disconnect frames are always
sent at 100 baud (24 bytes). The first 10 bytes
contain the call/address of the destination and
the second 10 bytes contain the call/address
of the source. These 20 bytes use 7 bit ASCII.
If the call/addresses are less than 10 bytes
long, the fill character 0xOF should be used

to extend the addresses to 10 bytes.

The 21st byte is zero. Bytes 23 and 24 are

the CRC. Byte 22 is the status byte and will be
11000000 for a connect frame or 100000xx for a
disconnect frame. Note that the Block Number
for a connect frame is always 0.

The MSB of the first 20 bytes are originally
zero because of the use of 7 bit ASCII. Bytes 2,

Figure 4

47 54 4F 52 54 4F 43 41 4C 4C 4D 59 43 41 4C 4Cc OF OF OF OF 00 CO ?? ?°?

\/ \/ \/ \/

\/ \/ \/

becomes

/\ /\ /\ /\

/\ /\

47 4D 4F 52 4D 4F 43 1C 4C 4C DC 59 43 1C 4C 4C F8 OF OF F8 00 CO F5 E4

5, 8,11, 14, 17, and 20 should now have their
MSB set to one; then the nibbles of these bytes
should be swapped. For example, a connect
frame to GTORTOCALL from MYCALL would
form as shown in Figure 4.

The reason for this strange format is that
when the frame is broken up into 12 bit
tribbles and sent to the interleaver,

474 D4F 524 D4F 431 C4C 4CD C59
431 C4C 4CF 80F OFF 800 COF 5E4

the first 14 bits transmitted (the MSBs of the
tribbles) will be alternating Os and 1s. Note
that this pattern is not present when the Golay
form of the frame is being sent.

The Slave should also look for connect frames
with mark and space inverted, and the Master
should also look for inverted Control Signals.
Once connected, each station should remember
its received polarity.

When the Slave decodes a connect frame
addressed to it, the Slave would normally
answer with a CS1 control signal. If the Slave
is busy, it would answer with a CS2.If the 21st
byte is not zero, or the 6 lower bits of the sta-
tus byte are not zero, the Slave should answer
with a CS5; this is for future expansion ~ the
Master indicating it has added capabilities,
the Slave indicating it does not yet support
those capabilities.

The Slave must be careful about ‘when’ it acks
the Master. Like Amtor and Pactor, the Slave
sets a fixed time after the Master’s transmis-
sion for its own transmission. For maximum
propagation, the Slave should set this time as
short as possible. However, the time should be
long enough so that it can not only decode and
possibly correct a data frame before sending
the ack as an IRS, but also long enough to form
a data frame when an ack is received from the
ISS. In other words, the Slave must be aware
of the time needed for its own processing.

The connect and disconnect frames are always
sent at 100 baud. If the ISS wants to discon-
nect but is transmitting at a higher baud rate,
it should send an idle frame with a status byte
100000xx; when the IRS sees this frame, it
should send a CS5 to downspeed the ISS but
should stay connected until the ISS sends a
true disconnect frame.

After the IRS acknowledges a disconnect
frame, it should remember the time relation-
ship between the disconnect frame and the
IRSs ack. If the ISS did not copy the ack, it will
keep sending disconnect frames until it times
out. If the IRS copies a disconnect frame to it
while in standby, it should re-send the last ack.

Data Format in Frames

The ISS can send data in three forms: straight
ASCII, Huffman compressed, and swapped
Huffman compressed. Swapped Huffman uses
the same tables as Huffman compressed but
swaps the upper case letters with the lower
case. Since Huffman compressed favors lower
case letters as in normal text, Swapped Huff-
man favors upper case letters in text which
may be predominately upper case. The ISS
must decide in which form to send the data

in order to provide the greatest throughput;

if there is no advantage in sending Huffman
codes, the ISS should send in straight ASCII.
All normal data frames and connect and dis-
connect frames are interleaved and, on alter-
nate cycles, Golay encoded.

If there is not enough data to send in a data
frame, IDLE codes are used to fill the frame.

If the frame is sending straight ASCII, 0x1E is
used as the IDLE code. In order to send a 0x1E
data byte, a 0x1C pass code must be sent fol-
lowed by 0x7E; in order to send a 0x1C data
character, a 0x1C pass code must be sent fol-
lowed by 0x7C. Only the ASCII data charac-
ters 0x1C and 0x1E need a pass code. The pass
code should never be the last character in an

53

ASCII data frame; in other words, the combi-
nations 0x1C 0x7E and 0x1C 0x7C should
never be split between data frames. G-TOR
Huffman compression uses a unique IDLE
code; there is no pass code when sending a
Huffman compressed frame.

The IDLE code also indicates the end of data
in a data frame: straight ASCIl or Huffman
compressed. The IRS should stop decoding the
data frame when it encounters an IDLE code,
and the ISS should never send data after an
IDLE code in a data frame. This function is
reserved for possible expansion.

BK Frames

If the IRS wants to send data to the ISS, it can
seize the link and become the ISS by sending
a BK frame. The BK frame is a special data
frame which is always sent at 100 baud and is
never interleaved nor Golay encoded. The first
16 bits of the BK frame comprise the CS3 con-
trol signal. The next 22 bytes are 19 bytes of
data plus the status byte and 2 byte CRC
formed over the data starting after the CSS3.
The Block Number in the status byte of the BK
frame is always 0. Each byte is sent LSB first.
If the ISS receives the BK frame correctly, it
sends a CS1 and becomes the new IRS, expect-
ing new data frames at the previous baud rate.
If the ISS detects the CS3 but does not receive
the data correctly, it sends a CS2 and becomes
the new IRS, still expecting data at the previ-
ous baud rate. If the original sender of the BK
frame received a CS2, it will re-form a data
frame using the old data that was used in the
BK frame plus any additional data available,
but again at the baud rate in use before the BK
frame was sent. If the sender of the BK frame
receives neither a CS1, CS2, or CS3, it will
re-send the original BK frame.

Since there is a possibility that the 1SS

does not receive the CS3 part of the BK frame
and therefore will re-send a data frame or

the Golay encoded form of the data frame, the
ISS must ensure that any data frame or Golay
encoded form of a data frame will not produce
a waveform which would appear as a 100 baud
CS1, CS2, or CS3 in the time slot where the
IRS may be looking for an acknowledgment to
its BK frame. The IRS should be sampling in
the receive ack time slot at the previous baud

54

rate to ensure that the ack received is truly a
100 baud signal and not an artifact of the 1SS
data frame at a higher speed.

The ISS can request a changeover by sending
a data frame with bit 6 of the status byte (BK
request bit) set to 1 (0100xxxx); the IRS would
then send a BK frame. A BK frame can also be
acknowledged with another BK frame, causing
quick changeovers. The BK frame serves as

a positive acknowledgment of the previously
received data.

Changing Speed

Data frames can be sent at 100,200, or 300
baud. CS4 and CS5 are the Control Signals
that the IRS uses to change the sending speed
of the ISS. Since the IRS can cause the ISS to
change from any one speed to any other speed,
the Control Signal used by the IRS depends
on the states of the two systems. Refer to the
Speed Transition Diagram in Figure 5. The
algorithm used by the IRS to determine speed
changes is not a part of this protocol. The algo-
rithm used by the KAM, however, is shown in
the flowcharts. A speed-up CS always acts as a
positive acknowledgment of the previous data
frame. A speed-down CS asks for the previous
data to be re-sent at a slower speed.

Slowdowns and BK Frames

If the ISS receives a slowdown signal from
the IRS, it has no way of knowing whether the
data just sent was received correctly or not and
therefore should re-send the data at the re-
quested slower speed using the same block
number. It is possible that the IRS could
request a further slowdown in speed while
the ISS is re-sending data. Any time the

IRS receives valid data, it should keep a
count of the characters in the frame. If the
IRS slows the ISS down and the new data
frame received has the same block count as
the previous frame, the IRS knows the ISS is
resending data and should throw away the
appropriate number of characters. The ISS
and IRS need to be careful with these charac-
ter counts during double slowdowns (from 300
to 200 and then from 200 to 100 baud).

If the IRS tells the ISS to slow down after the
ISS has sent a data frame with the BK request
bit set, or if the ISS decides it wants to send a

CS4 revd
Speed==300
Expecting CS2

CS5 revd
Speed==200
Expecting CS2

Speed transition diagram
Figure5

ISS

Speed==300

Speed==300
Expecting €S2 ‘Q‘

Expecting CS1

CS4 revd
Speed==200
Expecting CS1

Ccs1

CS5 ////
, CS4 rcvd

CS5 CS5

Speed==300
Expecting CS1

Speed==200
Expecting CS1

CS5 revd CS5 revd
Speed==100 Speed==200
Expecting CS1 Expecting CS1

Speed==100 Speed==100
Expecting CS1 Expecting CS2

55

BK request while re-sending data in response
to a slowdown, the ISS should not set the BK

request bit in the slower data frames until the
data frame contains the last character sent in
the original.

The IRS cannot send a BK frame until it
receives a valid data frame since the CS3 of
the BK frame is an acknowledgment of valid
data. If the IRS is receiving duplicated data
due to a slowdown, it should not send a BK
frame until all the duplicated data is received.

RLEn Coding

An RLEn code is a 19 bit code made up of a
unique 14 bit Huffman code followed by 5 bits
which represent a number n, O-31. RLEn codes
are found only in Huffman compressed data
frames and can never be the first code in a
data frame.

When an RLEn code is encountered in a data
frame, the previous character decoded in the
frame should be repeated an additional N
times, where N is a number which depends on
n and the number of bits used by the previous
Huffman character according to the following
table.

length of previous character N
2 bits n+10
3 bits n+7
4 bits n+d
5-6 bits n+4
7-9 bits n+3
10-16 bits n+2

An RLEn code may follow another RLEn code
immediately, indicating that the previous code,
which was just repeated, should be repeated
an additional N times.

Huffman codes are put into the data fields in
the order shown in Appendix 11. For example,

the first few bytes of “The quick brown fox”
using Huffman compression would be formed
as shown in Figure 6.

And before interleaving or Golay encoding,
the bytes are grouped into tribbles

1A2 3BD 6FE A65

Golay Coding and Interleaving

Before a data frame is transmitted, the data
is regrouped into 12 bit tribbles. For example,
a 100 baud frame of “The quick brown fox”
using no compression would be formed like:

54 68 65 20 71 75 69 63 6B
20 62 72 6F 77 6E 20 66 6F
78 1E 1E 01 7E 64

And then grouped into tribbles

546 865 207 175 696 36B
206 272 6F7 76E 206 66F
781 E1E 017 E64.

The data is interleaved by sending in time the
MSB of each tribble, and then the next MSB,

etc. The bit sequence of the above data would
start:

time->
0100000000000101
1000100011011101
0010111111111101
1001010001001000
8 nore groups of 12 bits

The ISS alternately sends frames of data and
Golay encoded data. Golay codes are unique
1%bit codes derived from 12 bits of data. The
C program in Appendix 10 shows how to gen-
erate the codes from the data and also how to
regenerate the correct data from the 24 bits of
data and Golay codes which have errors. The
correction algorithm will correct up to 3 bits
in error from the 24 bits of data and encoded
data. The Golay codes are generated from the

Figure 6
T h e q u i c k
0001101 000100 011 10 1111010110 11111 1101 010011 oOO010101
00011010 00100011 10111101 01101111 11101010 01100101 O1......
1A 23 BD 6F EA 65

56

tribbles of data before interleaving, so that
“The quick brown fox”

546 865 207 175 696 36B 206 272
6F7 76E 206 66F 781 E1lE 017 E64

becomes

083 092 57B 1A7 F88 C46 A85 AFl
9AE 342 A85 291 114 BAF 0Bl 3FO.

The tribbles are then interleaved as before,
starting with the MSB of the first tribble.

Note that the CRC of the original data is also
Golay encoded; there is no CRC generated
over the Golay encoded frame.

Note also that the inverse Golay function is
identical to the Golay function; in other words,
x=g(g(x)).

FEC Transmissions

At this time there is no special G-TOR broad-
casting mode. AMTOR mode B is used for call-
ing CQ. A G-TOR unit in standby should be
able to receive AMTOR mode B FEC signals.

Monitoring G-TOR

Third party monitoring of G-TOR connects
can be very difficult due to the nature of the
G-TOR protocol. Although a data frame is

always 1.92 seconds long, it may have been
sent at 100,200, or 300 baud. The frame
received may be the Golay encoded form of a
data frame. The BK frame is different in that
it is not interleaved, and its CRC is calculated
over shortened data. The frame received could
also be inverted polarity; however, the inver-
sion would stay the same during any particu-
lar connection. Since the Golay error correction
allows the IRS to copy data without ever get-
ting a proper CRC in one frame, a monitor pro-
gram should also go back 2.4 seconds to form
a correct frame if it is to be thorough. Again,
because of the nature of the G-TOR signal,
Carrier Detect or a PLL on bit transitions
cannot be used reliably, but a brute force algo-
rithm can be used. It would sample the data
stream at twice the baud rate for 100,200,
and 300 baud. Sampling at twice the baud rate
will take care of problems caused by sampling
near the edge of a bit. A program was written
to do a brute force algorithm using the fastest
assembly language techniques to check for all
possible G-TOR frames; the program ended

up using about 1/3 of the available cycles of a
50 MHz 486DX.

G-TOR is a trademark of Kantronics Co., Inc.

57

GTOR
MASTER

|

1SS_ind1cator=ON
Lock_1ndicator=OFF
Val1d_indicator=OFF
Clear GTOR holding buffer

Y

Golay_flag=0
Error_count=0

!

Form Connect
Block

Interieave & Send
Real Connect

Golay_flag=1

APPENDIX 1
Waiting for Connect Ak
Sheet 1 of 1

Interleave & Send
Golay Connect

Golay_flagd

Waiting for
Connect ACK

[

Expecting_CS=CS2

Valid_indicator=ON

Lock_1nd1cator=ON
Block_number=1

Slave

Master,
1-Iv

cs2

Go to
Standby

GTOR
SLAVE

APPENDIX I'1
Standby/Mafting for receive
Sheet 1 of 1

Walting
for Rev

1SS_1nd1 cator=ON

Yes

l QRT_T1 mer-(il | 0RT_T1mer-240*2£|

[SS_1ndicator=OFF
Lock_1ndicator=OFF
Valid_indicator=OFF

Clear GTOR holding buffer

“Standby"”

Standby

Transmit Bt
request Request
T
I Control_key=0 I
FEC transmit
Go to Go to
Standby Standby
H H

Possible GTOR
Block addressed
to My_Call

Receive
FEC transmission

‘ Standby ,

Golay_flag=0
Blocks_rcvd_flag=0

Check for
Connect

59

APPENDIX 111
Cormect in progress
Sheet 1 0f 1

rnm _Data <-- IlodJ m <. G(Cow_Dm)J
o (o]

Form Block using
Golay error correction
on Real_data and
Golay_data

Yes No
CRC(Block) 0K

No

To_CallaMy_Cal)
Correlate To_Call
to M_Call

Yes Send €S2

*Comected to®

Send_CS_f1ag=CS1

Blocks_rcvd_ag=0 Yes
Data_count=0
Send_CS_f1ageCs1
Cs=CS1

Error_cant=0

Rq_Baud=AUTO Send CS1 Send CS2
Valid_jndicator=ON
Lock_indicator=0N

i I

Weiting
for Block

60

APPENDIX IV
Waiting Waiting for AX
for A Shet 1 of 2

IRl

<>

o

[oectmcsnm<s] [Eostimesnums]

M7I1

Expecting_CS_f1ag=CS1
Valid_irdi cator=CFF

Yes

19

c9

APPENDIX IV
Watting for AX
et 2 0of 2

[T amsrrmovacan sodcmsen | |

=

End_come1

Form D1 scomnect
Block with

Interlave & Serd I_m:;:urmuﬂs-_u>
ResTTORtE >
y

[sotar]

=l I [Goly_Nap=0 I

|

Vatting
for AX
1N

v 30 1 1S
x01g L) fujaen
A XION3ddv

X01g L
Bujijem

=S

$53=5)
253=be(37syTpuas
440=J03@D|PU{ P} | RA
002=paads

ox
002=paads
£

00z=pneg by
O~kax {04303

[0t 7hei00 | [ety Heron]

T
|
|
[018 -> erarseion [woig > wwe 1wy |

(10 Ae109)9 - > %01¢

F oo

be| 3y Ae(09

X018 Ly
Buyy e

$3 puas

§52=52
2506215750 puas
330=J0700|pU D} |04

001=paads

00T=paads

007=pneg by
O=Aaf"1043u0)

§53=52

?$3=5)

01ny=pne¢by
0=1UN0J"3A 309y
im%«#ogﬁu

A3y (0Ju0)

018
w31} -0

63

N
H

Error_flag0
Combined_f1ag~0
No
CRC(Block) OK
Yer Error_flag=l
Yes
Blocks_revd_Nag
No
Form Block using
Golay error corvection oy
on Rea)_dsts and Slocka reyd fles)
Golay_date

| Receive_Count=0

APPENDIX v
Waiting far Block
Sheet 2 of 4

CRC(Block) OX

Blacks_revd_flag=0
Blk_number=status(Block)

Rq_Baud=Auto

Block_number
=Last_block

Receive_Count++

Speed=~100

No
Yes
Recefve_count -

1

Yes

Speed=200

Rq_Beud=300

S9

Error_count++
RQ_flag=1

Last_block=810ck_number
RQ_flag=0

APPENDIX V
Waiting for Black
Sheet 3 of 4

Receive_count=0
Error_count=0

1

Speed-200

Valid_indicator=OFF

Send_(S_flag=CS2
cs-cs4

[]

Send CS >

‘ e
Receive_count=0 L peveme?
" Speed=200
Speed=100 Valid_indicator=0FF r
Rece ive_count
>V
p_param Send (S_flag
=CS1
Send
Speed=100
Go to R“;;::Ei%g-o Valid_indicator=OFF
o RS- . Send_CS_flag=CS2
tor=CF €5=CS5
11
Hi_Jump_Flag
No
TURN
AROUND
]
Change_f1ag=1
l Block_rumber=0
Q Expecting CS=CS1
~.
Yes
Exit reqest
No i

Al

[ororon |

E“ME
280 -
ON

Sety"gyPuds

v 40 § 13US
¥0(8 S04 6u})|q
A XION3ddY

"9A 130
[URacTYCRE] AT

0Lg)
i1

0-¥037J0443
1=Be L dun (" IH saA E
7
002-pasds
ot-paads 55393

oN NO=DOIRPui P} { A
0=IUNOT A} 3Y

0-N03"0403

oN

xov
PUNOJ RUIN|
x4 Bujm

66

Waiting for
Turnaround
Ack

APPENDIX VI
Waiting for turnaround ACK
sheet 1 of 1

cs1 €s2 -
Recetved Recefved Received
I Change_f1ag=0 | | Change_f1ag=0 l I Error_count++ l

I AckBuf I

Block_number=1
Expecting_CS_f1ag=CS2

B

| 155_tndtcator=oN |

Slave

Master
I-v

Error_count
=Max_errors

Go to
Standby

Send Turnaround H
Block

Waiting for

Turnaround
Ack

Fast
Turn

Cs3
Received
Change_f1ag=0

CS4_rcvd_flag=0
CS5_rcvd_flag=0
Recelve_count=0

Control_key="R"

Control_key=0

Yes
CRC OK —l
No Save status
Send_CS_f1ag=CS1
Block_number=0
€s=Cs1
Send_CS_f1ag=CS2
Block_number=3
cs=cse |] Print Cata
No
fet—————— BK request
~\
1SS_ind{cator=OFF Yes
Recetve_count=0
Rq_Baud=Auto
Error_count=0
TURN
) AROUND
Send CS 3V

Waiting
for Black

67

89

Pointer—
Start of xmit
frome buffer

Max_count=
Maximum number of

bytes to remove
from keyboard buffer

i

Byte_court=
Number of data
Tytes inomit tuffer

Bit_count-8*Byte_count

¥

removecnt 1-0
removecnt2=0
cntl-0

12 flag-0
Huffman_swap_flag-0
RLE1_flag-0
RLE2_f1ag-0
Number-0

APPENDIX VI1
Getbuf subroutine

GETBUF

ACKBUF

No
GTH_Q=GTH_S

GTH_0-GTH_S

| unacked_data=0 | | Unacked_data-Unacked_data-Remove_count |

RLEI_flag

69

APPENDIX VII
rout

Number=1
RLEl_flag~0

RLE1_flag=1
cntl+=(19-sizel*(Msmber-2))
cntl+=sizel removecntl1++
removecntl+
sizel=ufert(c)
last=c Ful]l_@
Yes
1salpha(c)
No No
1 size2s1zel I I size2=hufert[c » 020

RLE2_flag

cnt2+19
-size2*(Number-2)
Sbitot

RLE2_flag=l
cnt2+=(19-size2*(Nurber-2))
removecnt2++

Ful12_flag=1

Ful12_flag=1

N =34
removecnt2++ umbe r=3.
L Temove

cnt2+ |
Yes
Yes Fulll flag
No
No

GTH_S++

L]

oL

APPENDIX VII
Getbuf subrout ine
Sheet 3 of 4

removecnt 1=0

—lastc—
s 2ewsizeof ()
Number-0

1

removecnti++
GTH_S++

Byte_count>1
Put Ox1E
Put Ox1C
Byte_count --
c=c OR 0x70
T - -Byte_count
removecntl++ Vo
GTH_S++
At c
Ye No
- -Byte_count

L

(retum(eor))

Remove char ¢
from Transmit queue

GTH_BUF [GTH_P++]=c

APPENOIX VII
Getbuf subrout ine
Sheet 4 of 4
c=c XOR 0x20
Huffmen_flag=0
Status=Block_count

Restore pointer
Put RLE
Put Number-Table(size]

Number++

removecnt1++
GTH_S++

Restore pointer
Put RLE

Put Number-Table{size]

Number=
31+Table size)

Yes

Pad it
frame buffer
withidles

Huffman_flag=1

Restore pointer
Put RLE
Put Mumber-Table{s{ze)

&

Remove_count=removecnt |

[wmrnma |

ON
#3ndeo)
s

oN

ERL]

O-beLyTssey
0=3uncy Baes™e1eg

L1
QQ Wiy
111A X1Q0ddv

12

ONONONO

O,
O,
®
O,
®
©
@

v 40 1 3995
3343 BULPOSSP uewy sy
XI X1ON3ddV

73

v,

APPENDIX IX
Huffman decoding tree
Sheet 2 of 4

®

® ® ®

75

¥ 30 ¢ WS
333 6uipodsp uew Ny
X1 XTON3ddV

76

Appendix 10

C Program for Golay Encoding and
Decoding

#include “stdlib. h”

#include “stdio. h”

#include “string. h”

#include “ctype. h”

unsigned g[4096],wt[4096];

unsigned b[12]=
{0xDC5,0xB8B,0x717,0xE2D,0xC5B,0x8B7,
0x16F,0x2DD,0x5B9,0xB71,0x6E3,0xFFE};

}/oid create_golay_table(void)

unsigned i ,j ,data;

for(i=0;1<4096;i++)

{
for(j=0,data=0;j<12;j++)
if(i&(0x800>>j))data=b[j];

)
]g[i]=data;
}
void create-weight-table(void)
{
unsigned i,j ,data;
for(i=0;i<4096;i++)

{
for{(i=0x800,data=0;j;j>>=l)
)if(i&j)data++;

;;vt[i]:data;
}
main(argc,argv)
int arggc;
char *argv(];
{

unsigned input,parity,i;
if(;{u‘gc<2 I | arge>3 | | isalnum(argv[1][0])==0)

displays golay coding of ”
“hex value xxx\n”);
printf(“g xxx yyy displays results of error
“correction of xxx data ”
“and yyy parity\n”);

printf(“g xxx

”

}retu rm(O);
if(s{scanf(argv[l],"%x”,&input)!:l)

printf(“invalid data input\n”);
exit(l);

)
ifinput>0xFFF)

{
printf(“input too large\n”);
exit(2);

)
create_golay_table();
create-weight-tableo;
if(arge==2)printf(“%3.3X ==> "
“%3.3X\n” input,glinput]);
else

{
if(?scanf(argv[Z],”%x”,&parity)!:1)

printf(“invalid parity input\n”);
exit(3);

if(}()arity>OxFFF)

printf(“parity too large\n”);
exit(4);
)

if(\Evt[input"g[parity]]<=3)

printf(“%3.3X and %3.3X ==>"
“%3.3X\n”,input,parity,g[parity));
]retu rn(0);

for(i=0;i<12;i++)
if(v{vt[input"g[parity]"b[i]k:Z)

printf(“%3.3X and %3.3X ==> "
“%3.3X\n",
input,parity,glparity]*blil);
return(0);

)
if(\Evt[g[input]"parity]<=3)

printf(“%3.3X and %3.3X ==>"
“%3.3X\n”,input,parity,input);
return(0);

for(i=0;i<12;i++)
iﬂ\(avt[g[input]Apaﬁ.tyAb[i]]<=2)

printf(“%3.3X and %3.3X ==>"
“%3.3X\n”",
input,parity,input*(0x800>>1));
}retu rn(0);

printf(“cannot correct\n”);
}
}retu rn(0);

77

Appendix 11

Huff man Table
by ASCII Code

1111000011111000
1111000011111001
1111000011111010
1111000011111011
1111000011111100
1111000011111101
1111000011111110
1111000011111111
1111000011110010
1111000011110011
001101
1111000011110100
1111000011110101
001100
1111000011110110
1111000011110111
1111001110000000
1111001110000001
1111001110000010
1111001110000011
1111001110000100
1111001110000101
1111001110000110
1111001110000111
1111001110001000
1111001110001001
1111001110001010
1111001110001011
1111001110001100
1111001110001101
0x1E 1111001110001110
0x1F 1111001110001111
0x20 10

0x21 11110011101

0x22 110001101100
0x23 0010100011011
0x24 0001010111001
0x25 110001101101
0x26 111100111001
0x27 110001101110
0x28 110011011

0x29 110011100

0x00
0x01

0x02
0x03

0x04
0x05

0x06

0x07

0x08

0x09
0x0A
0x0B
0x0C
0x0D
0x0E
0xOF
0x10
0x11

0x12
0x13
0x14
0x15
0x16
0x17

0x18

0x19
0x1A
0x1B
0x1C
0x1D

78

0x2A
0x2B
0x2C
0x2D
0x2E
0x2F
0x30
0x31
0x32
0x33
0x34
0x35
0x36
0x37
0x38
0x39
0x3A
0x3B
0x3C
0x3D
0x3E
0x3F
0x40
0x41
0x42
0x43
Ox44
0x45
0x46
0x47
0x48
0x49
0x4A
0x4B
0x4C
0x4D
0x4E
0x4F
0x50
0x51
0x52
0x53
0x54
0x55
O0x56
Ox57
0x58
0x59

001010001100
111100111110
1100101
00010101111
1100100
11110011110
11000111
001010000
0001011010
0001011011
0001011100
0001010101
0001011101
0001011110
0001011111
0001010010
00101000111
11110000110100
0001010111010
1111000010
111100111111
1100110101
0001010111000
00101001
11001111
11110001
11110100
11000000
11001100
00010100111
0010100010
11110010
1100000110
1100110100
110011101
111101010
111100000
000101000
000101100
00101000110101
110000010
1111011
0001101
1100000111
1100011000
0001010100
0001010111011
1111010111

+

-
-

Ve W we we ws we
~. '

-

~ - - -

C O g BE W =S

I
.
”»
.
<
.
;=

>

CHOROWORREFRLFIAHEHLAWS S

-

KRS < Tl OB

-

0x5A 1100011001 4
0x5B 00101000110100 ;[
0x5C 11110000110101 ;\
0x5D 11110000110111 ;]
Ox5E 11000110111111 ;A
0x5F 111100001100 i
0x60 11110000111000 ;
0x61 01000 ;a
0x62 0000110 ;b
0x63 010011 ;C
0x64 00111 ;d
0x65 011 ;e
0x66 0000111 if
0x67 000111 4
0x68 000100 ;h
0x69 1101 i
0x6A 00010100110 iJ
0x6B 0010101 k
0x6C 000010 ;1
0x6D 001011 ;m
0x6E 0101 n
0x6F 010010 ;0
0x70 11000010 ;P
0x71 1111010110 iq
0x72 1110 ;T
0x73 00100 ;8
0x74 00000 it
0x75 11111 a
0x76 11000011 v
Ox77 0001100 W
0x78 1100011010 ;X
0x79 0001010110 3y
0x7A 1100010 ;2
0x7B 11000110111110 ;{
0x7C 11110000110110 ;!
0x7D 11000110111101 ;)
0x7E 11000110111100 ;~
Ox7F 1111000011110001
111100110xxxxx%X

0x80 1111001100000000
0X81 1111001100000001
0X82 1111001100000010
etc.

IDLE 1111000011110000
RLE 11110000111001

UNUSED 1111000011101

;upper ascii

HuffmanTable
by Huffman Code

0x20
0x65
0x69
0x6E
0x72
0x61
0x64
0x73
0x74
0x75
0x0A
0x0D
0x63
0x67
0x68
0x6C
0x6D
0x6F
0x2C
0x2E
0x53
0x54
0x62
0x66
0x6B
0x77
0x7A
0x30
0x41
0x42
0x43
0x44
0x45
0x46
0x49
0x70
0x76
0x28
0x29
0x31
0x4C
0x4D
0x4E
0x4F
0x50

10

011

1101
0101
1110
01000
00111
00100
00000
11111
001101
001100
010011
000111
000100
000010
001011
010010
1100101
1100100
1111011
0001101
0000110
0000111
0010101
0001100
1100010
11000111
00101001
11001111
11110001
11110100
11000000
11001100
11110010
11000010
11000011

110011011
110011100
001010000
110011101
111101010
111100000
000101000
000101100

~
~

'UOZZI_'—‘VA<'U_ﬂmo(')w}bh“i“?_‘_“b‘—r(nv :‘b‘B"—“ij‘QB‘%‘I_EHEDb‘“WHE‘_?D -
T

-~

0x52
0x32
0x33
0x34
0x35
0x36
0x37
0x38
0x39
0x3D
0x3F
0x48
0x4A
0x4B
0x55
0x56
0x57
0x59
0x5A
0x71
0x78
0x79
0x21
0x2D
0x2F
0x3A
0x47
0x6A
0x22
0x25
0x26
0x27
0x2A
0x2B
0x3E
0x5F
0x23
0x24
0x3C
0x40
0x58

110000010
0001011010
0001011011
0001011100
0001010101
0001011101
0001011110
0001011111
0001010010
1111000010
1100110101
0010100010
1100000110
1100110100
1100000111
1100011000
0001010100
1111010111
1100011001
1111010110
1100011010
0001010110
11110011101
00010101111
11110011110
00101000111
00010100111
00010100110
110001101100
110001101101
111100111001
110001101110
001010001100
111100111110
111100111111
111100001100

0010100011011
0001010111001
0001010111010
0001010111000
0001010111011

e v

~

e e e we v .
@oo\lc»cn_pool\);u

- - - e - [P -

-

~

TY KB N

-

$
<
;@
X

UNUSED 1111000011101
0x3B 11110000110100 ;;
0x51 00101000110101 ;Q
0x5B 00101000110100 ;I
0x5C 11110000110101 ;\
0x5D 11110000110111 ;]
0x5E 11000110111111 ;»

CELEREETT

0x60
0x7B
0x7C
0x7D
0x7E
RLE
0x00
0x01
0x02
0x03
0x04
0x05
0x06
0x07
0x08
0x09
0x0B
0XocC
0x0E
0xOF
0x10
0x11
0x12
0x13
0x14
0x15
0x16
0x17
0x18
0x19
Ox1A
0x1B
0x1C
0x1D
0x1E
0x1F
0x7F

111100110xxxxxxxUpPper asci i

0x80
0X81
Ox82
ete

11110000111000
11000110111110
11110000110110
11000110111101
11000110111100
11110000111001
1111000011111000
1111000011111001
1111000011111010
1111000011111011
1111000011111100
1111000011111101
1111000011111110
1111000011111111
1111000011110010
1111000011110011
1111000011110100
1111000011110101
1111000011110110
1111000011110111
1111001110000000
1111001110000001
1111001110000010
1111001110000011
1111001110000100
1111001110000101
1111001110000110
1111001110000111
1111001110001000
1111001110001001
1111001110001010
1111001110001011
1111001110001100
1111001110001101
1111001110001110
1111001110001111
1111000011110001

1111001100000000
1111001100000001
1111001100000010

| DLE 1111000011110000

For the Huffman decoding tree,

see Appendix 9.

