
G-TORT”: The Protocol

by Kantronics Staff
Mike Huslig, Phil Anderson, Karl Medcalf, and Glenn Prescott

Foreword

The G-TOR data communications protocol is an
innovation of the technical staff of Kantronics
Co., Inc. It was introduced as an inexpensive
means of improving digital communications
in the HF radio bands. A hybrid ARQ scheme,
used in combination with an invertible, half-
rate Golay forward error correcting code, is the
single-most essential element in the protocol.

The purpose of this document is to present
a detailed description of the G-TOR protocol.
It is assumed that the reader is f&liar with
ARQ systems such as AIYITOR, Pactor, and
Packet; terms such as MASTER, SLAVE, ISS,
IRS as they pertain to protocols; and binary,
HEX and C-language number notations. Oper-
ation, performance objectives, and performance
results of systems using this protocol are not
discussed; these aspects of G-TOR have been
covered widely in trade publications.

The description is organized in sections as
follows: a general overview, including term
definitions and initialization of parameters;
timing; definition and usage of data, control,
BK, and connect and disconnect frames; data
formats; speed change procedures; the Huff-
man table; and Golay coding and data inter-
leaving. Appendices containing flow charts,
a HufFman decoding tree, and a C language
routine for Golay encoding/decoding follow
the protocol description.

General

The system which originally transmits a
G-TOR connect request is called the Master,

and the system which responds to the trans-
mitted connect request is called the Slave.
The system currently sending data blocks is
called the Information Sending Station (ISS),
and the system receiving these data blocks is
called the Information Receiving Station (IRS).
During a connection, tlhe Master is always the
Master and the Slave is always a slave, but
either system may be the ISS while the other
is the IRS. Immediately &r a connection, the
Master is the ISS while the Slave is the IRS.
The IRS will send a Control Signal #1 (CSl)
immediately after connection or turnaround to
indicate it is ready for data; it sets an internal
flag (Send-CS flag) to CSl. The IRS also sets-
its internal error count; to 0, its blocks-received
count to 0, and its Last Block number to 0.
When the ISS receives the CSl, it sets an
internal flag (Expecting CS

- -
flag) to CS2 and

Block-number to 1.

The Master and the Slave both have an
internal flag (GolayJlag) which is comple-
mented every 2.4 second cycle. During the
connect process, this flag is set to be the same
in both systems. Whenever the ISS receives
a proper Acknowledgment (the CSl the farst
time around), it forms a new frame of data
(Real-Data). This new data frame is also fed
through the Golay encoder to form a frame
of parity bits (Golay-Data). The ISS sets an
internal error count to 0. Depending on the
state of the Golay-flag in the ISS, the ISS will
choose the Real-Data frame or the Golay-Data
frame to transmit. The Golay flag in the ISS is
then complemented for the n&t cycle. Which-
ever frame is chosen, that frame is then inter-
leaved and transmitted..

49

Figure 1

14 t3
*I

- - - - -
MASTER: r

WS)
DATA FRAME SENT I ack, L----- i LIZJ

4 2.40 set *

4 1.92 set *
- 0.46 set -

SLAVE: I- - - - - iat; f;;;e-r;c;-;d- - - - - -I
(I R S) - - - - - - - - -,,----------1I

I

---so

tl is radio wave propagation time
t2 is slave acknowledgment delay which includes processing time and transmitter turn-on delay;

t2 is constant while connected, even when the Slave is the ISS
t3 is determined by the Master during initial synchronization and should vary only slightly during

the connection

MASTER:
(IRS)

r - - - - iit; fiime-r&iiid- - - - - -I
I - - - - - - - - - - - - - - - - - - - - - ,’

I
---0.

L -----

t1I-l . .
I t 3

SLAVE: r ---0.

w>
DATA FRAME SENT I ack

. 4 L ---0-

Changeover timing

4 2.40 set c

MASTER: r ---0-0--e-w----- f
-0--

DATAn FRAME SENT 1 cs3- data0 rcvd i CSl I data1
4 L - , - - - - - - c - - - - - - - I L - - - -

I-

t3
)I I-

t3
A

SLAVE: r, - - - daiaj;a-&;c;d - - - 7 \ j&-j
I cs3- DATA0 SENT

L ___-0.---a------

r

l-l
t1

l - l -
t2 1.92 set - l-lt2

The IRS is expecting to receive a frame during
a certain time period in the 2.4 second cycle.
When it has received the frame, the IRS then
increments its Blocks received count and de--
interleaves the block. If the ISS Golay-flag is
set, a copy of the block is saved as Golay-Data;
the block is then fed through the Golay encoder
to generate the original data. If the ISS
Golay-flag is clear, a copy of the block is saved
as Real-Data. The Golay-flag is then comple-
mented. If the CRC of the block is correct, the
IRS has received the data correctly. If the
CRC is not correct, the IRS checks to see if
the Blocks-received counter is greater than 1,
indicating it has received a copy of both the
Real-Data and the Golay-Data. If the IRS has
a copy of both, it will try to regenerate the orig-
inal data using Golay error correction. If the
CRC is still incorrect, the IRS error count is
incremented. If the error count is greater
than a set maximum number of errors, the
IRS will go back into a standby mode; other-
wise, to indicate failure, the IRS will re-send
the same Control Signal it sent in the last
cycle. If the CRC of the received block or the
error corrected block is correct, the IRS clears
its Blocks received count and compares the
Block number in the received frame with
the L&t Block number it correctly received.
If they &e the same, then the received data
frame is the same, indicating most likely
that the ISS has not correctly received the
last Control Signal sent by the IRS; the IRS
then resends the last CS. If the Block-number
is one greater than the Last-Block number
received, then this block is the next data
expected; the IRS now sets its Last Block
number to the Block number received and
prints the data received; the IRS error count
is set to 0; the Send-C&flag is complemented
and the appropriate Control Signal is trans-
mitted. If the Block number is otherwise, then
some protocol error has occurred, and data
has been lost.

Block number is incremented, and the ISS-
fetches new data to be transmitted. Otherwise,
the data has not been acknowledged, or the
ISS has not received the acknowledgment.
The ISS then increments its error count, and
if the error count is less than some set maxi-
mum, the ISS will try to send the data again.

Timing

The basic G-TOR cycle is very similar to
AMTOR and PACTOFt. The ISS sends long
data frames which are acknowledged by
the IRS with shorter control signals (CS).
The total cycle duration is 2.4 seconds. The
data frames are 1.92 seconds long and the
control signals are 0.1.6 seconds long. 0.32
seconds remain in the cycle for radio switch-
ing, wave propagation, and the necessary
computing for both Miaster and Slave systems.
The Master controls tlhe total cycle time. The
Slave adjusts its receive window to follow the
Master’s transmissions, but since the Slave’s
transmissions are always fixed in relation to
its receive window, the Slave’s transmissions
follow the Master’s transmissions. The Master
only corrects its receive window. Refer to
Figure 1.

Data Frame Structure

The frame structure for a typical G-TOR data
frame (before interleaving) is shown in Figure
2. The data frame is L.92 seconds in duration.
Depending on channel. conditions, data can be
sent at 100,200, or 300 baud. Each data frame
is composed of either 72 bytes (at 300 baud), 48
bytes (at 200 baud), or 24 bytes (at 100 baud).

Figure 2
G-TOR Frame Structure Before Interleaving

Data

The ISS is expecting to receive an acknowledg-
ment during a certain time period in the 2.4
second cycle. If the ISS receives a CS2 when
it was expecting a CSZ, or it receives a CSl
when it was expecting a CSl., the ISS consid ers

69 data bytes @ 300 baud 1. \
45 data bytes@ 200 baud \
21 data bytes@ 100 baud \, \/A) \/- \

the sent data to be properly acknowledged.
The Expecting-CSJlag is complemented, the

51

A single byte near the end of the frame is
devoted to command and status functions.
The status byte is interpreted as follows:

*statusbits7&6:
Command

00 - data
01 - change-over request
10 - disconnect
11 - connect

l status bits 5 & 4:
Unused

00 - reserved

l statusbits3&2:
Compression

00 - none
Ol-Huffman
10 - Swapped Huffman
ll-reserved

l status bits l&O:
Block Number modulo 4

The last 2 bytes of the frame contain the CRC.
Like Packet and Pact-or, the CRC is computed
using the same CCITT standard, starting at
the first byte of a data, connect, or disconnect
frame and starting at the third byte of the BK
frame. However, the two bytes of the CRC are
swapped before being put in the frame.

Control Signal Structure

The G-TOR Control Signals (CS) are 2 bytes
(16 bits) long and are always sent at 100 baud.
Each byte of the Control Signal is sent LSB
first. Control Signals are used to acknowledge
correct or incorrect receipt of frames from the
information sending station. They are also
used to request changes in transmission speed
and to initiate a change-over in information
flow direction. There are five different G-TOR
Control Signals:

Signal-Function Code Bit pattern in time

CSl-Data a&hack FllA 1000111101011000

CS2-DataacWnack 6B62 1101011001000110

CSXhange-over
command 5E13 0111101011001000

52

CSMpeed change 4D3C 1011001000111100

CSfi-Speedchange 8957 1001000111101010

The CS codes are composed of multiple cyclic
shifts of a single l&bit pseudo-random noise
(PN) sequence (an extra ‘0’ bit is appended to
the sequence for balance, so the total CS word
length is 16). A pseudo-random noise sequence
is used because PN sequences have powerful
mathematical correlation and distance prop-
erties which facilitate the identification of the
appropriate CS code, even in the presence of
noise and interference. Each CS has a mutual
Hamming distance of 8.

BK Frame Structure

The change-over frame is shown in Figure 3.
This frame is always transmitted at 100 baud
and is never interleaved. It is essentially a
combination of the CS3 Control Signal and
a shortened data frame. Each byte of the BK
frame is sent LSB &St.

Figure 3
G-TOR Changeover Frame Structure

4 1.92 set)I

cs3 Data Status CRC
(2 bytes) (19 bytes) (1 byte) (2 bytes)

Formation of Connect and Disconnect
Frames

Connect and Disconnect frames are always
sent at 100 baud (24 bytes). The first 10 bytes
contain the call/address of the destination and
the second 10 bytes contain the call/address
of the source. These 20 bytes use 7 bit ASCII.
If the call/addresses are less than 10 bytes
long, the fill character OxOF should be used
to extend the addresses to 10 bytes.

The 21st byte is zero. Bytes 23 and 24 are
the CRC. Byte 22 is the status byte and will be
11000000 for a connect frame or 1OOOOOxx for a
disconnect frame. Note that the Block Number
for a connect frame is always 0.

The MSB of the first 20 bytes are originally
zero because of the use of 7 bit ASCII. Bytes 2,

5,8,11,14,17, and 20 should now have their
MSB set to one; then the nibbles of these bytes
should be swapped. For example, a connect
frame to GTORTOCALL from MYCALL would
form as shown in Figure 4.

The reason for this strange format is that
when the frame is broken up into 12 bit
tribbles and sent to the interleaver,

474 D4F 524 D4F 431 C4C 4CD C59
431C4C 4CFBOF OFF800 COF5E4

the first 14 bits transmitted (the MSBs of the
tribbles) will be alternating OS and Is. Note
that this pattern is not present when the Golay
form of the frame is being sent.

The Slave should also look for connect frames
with mark and space inverted, and the Master
should also look for inverted Control Signals.
Once connected, each station should remember
its received polarity

When the Slave decodes a connect frame
addressed to it, the Slave would normally
answer with a CSl control signal. If the Slave
is busy, it would answer with a CS2. If the 21st
byte is not zero, or the 6 lower bits of the sta-
tus byte are not zero, the Slave should answer
with a CS5; this is for future expansion - the
Master indicating it has added capabilities,
the Slave indicating it does not yet support
those capabilities.

The Slave must be careful about ‘when’ it acks
the Master. Like Amtor and Pactor, the Slave
sets a fixed time after the Master’s transxnis-
sion for its own transmission. For maximum
propagation, the Slave should set this time as
short as possible. However, the time should be
long enough so that it can not only decode and
possibly correct a data frame before sending
the ack as an IRS, but also long enough to form
a data frame when an ack is received from the
ISS. In other words, the Slave must be aware
of the time needed for its own processing.

Figure 4
47 54 4F 52 54 4F 43 41 4C 4C 4D 59 43 41 4C 4C OF OF OF OF 00 CO ?? ??

\/ \/ \/ \/ \/ \/ \/
becomes

/\ /\ /\ /\ /\ /\ /\
47 4D 4F 52 4D 4F 43 1C 4C 4C DC 59 43 IC 4C 4C F8 OF OF F8 00 CO F5 E4

The connect and disconnect frames are always
sent at 100 baud. If the ISS wants to discon-
nect but is transmitting at a higher baud rate,
it should send an idle frame with a status byte
1000OOxx; when the IRS sees this frame, it
should send a CS5 to downspeed the ISS but
should stay connected until the ISS sends a
true disconnect frame.

After the IRS acknowledges a disconnect
frame, it should remember the time relation-
ship between the disconnect frame and the
IRSs ack. If the ISS did not copy the ack, it will
keep sending disconnect frames until it times
out. If the IRS copies a disconnect frame to it
while in standby, it should re-send the last ack.

Data Format in Frames

The ISS can send data in three forms: straight
ASCII, Hufhan compressed, and swapped
HuKman compressed. Swapped H&man uses
the same tables as Huftian compressed but
swaps the upper case letters with the lower
case. Since Huffman compressed favors lower
case letters as in normal text, Swapped HufK
man favors upper case letters in text which
may be predominately upper case. The ISS
must decide in which form to send the data
in order to provide the greatest throughput;
if’ there is no advantage in sending Huffman
codes, the ISS should send in straight ASCII.
All normal data frames and connect and dis-
connect frames are interleaved and, on alter-
nate cycles, Golay encoded.

If there is not enough data to send in a data
frame, IDLE codes are used to fill the frame.
If the frame is sending straight ASCII, OxlE is
used as the IDLE code. In order to send a OxlE
data byte, a 0xX pass code must be sent fol-
lowed by Ox7E; in order to send a OxlC data
character, a OxlC pass code must be sent fol-
lowed by Ox7C. Only t.he ASCII data charac-
ters 0xX and OxlE need a pass code. The pass
code should never be the last character in an

53

ASCII data frame; in other words, the combi-
nations OxlC Ox7E and 0xX Ox7C should
never be split between data frames. G-TOR
Huffinan compression uses a unique IDLE
code; there is no pass code when sending a
Huffinan compressed came.

The IDLE code also indicates the end of data
in a data frame: straight ASCII or H&man
compressed. The IRS should stop decoding the
data frame when it encounters an IDLE code,
and the ISS should never send data after an
IDLE code in a data frame. This function is
reserved for possible expansion.

BK Frames

If the IRS wants to send data to the ISS, it can
seize the link and become the ISS by sending
a BK frame. The BK frame is a special data
frame which is always sent at 100 baud and is
never interleaved nor Golay encoded. The first
16 bits of the BK fi‘ame comprise the CS3 con-
trol signal. The next 22 bytes are 19 bytes of
data plus the status byte and 2 byte CRC
formed over the data starting after the CS3.
The Block Number in the status byte of the BK
frame is always 0. Each byte is sent LSB first.
If the ISS receives the BK frame correctly, it
sends a CSl and becomes the new IRS, expect-
ing new data frames at the previous baud rate.
If the ISS detects the CS3 but does not receive
the data correctly, it sends a CS2 and becomes
the new IRS, still expecting data at the previ-
ous baud rate. If the original sender of the BK
frame received a CS2, it will re-form a data
frame using the old data that was used in the
BK frame plus any additional data available,
but again at the baud rate in use before the BK
frame was sent. If the sender of the BK frame
receives neither a CSl, CS2, or CS3, it will
re-send the original BK frame.

Since there is a possibility that the ISS
does not receive the CS3 part of the BK frame
and therefore will re-send a data frame or
the Golay encoded form of the data frame, the
ISS must ensure that any data frame or Golay
encoded form of a data frame will not produce
a waveform which would appear as a 100 baud
CSl, CS2, or CS3 in the time slot where the
IRS may be looking for an acknowledgment to
its BK frame. The IRS should be sampling in
the receive ack time slot at the previous baud

rate to ensure that the ack received is truly a
100 baud signal and not an artifact of the ISS
data frame at a higher speed.

The ISS can request a changeover by sending
a data frame with bit 6 of the status byte (BK
request bit) set to 1 (OlOOxxxx); the IRS would
then send a BK frame. A BK frame can also be
acknowledged with another BK frame, causing
quick changeovers. The BK frame serves as
a positive acknowledgment of the previously
received data.

Changing Speed

Data frames can be sent at 100,200, or 300
baud. CS4 and CS5 are the Control Signals
that the IRS uses to change the sending speed
of the ISS. Since the IRS can cause the ISS to
change from any one speed to any other speed,
the Control Signal used by the IRS depends
on the states of the two systems. Refer to the
Speed Transition Diagram in Figure 5. The
algorithm used by the IRS to determine speed
changes is not a part of this protocol. The algo-
rithm used by the KAM, however, is shown in
the flowcharts. A speed-up CS always acts as a
positive acknowledgment of the previous data
frame. A speed-down CS asks for the previous
data to be re-sent at a slower speed.

Slowdowns and BK Frames

If the ISS receives a slowdown signal f?om
the IRS, it has no way of knowing whether the
data just sent was received correctly or not and
therefore should re-send the data at the re-
quested slower speed using the same block
number. It is possible that the IRS could
request a further slowdown in speed while
the ISS is re-sending data. Any time the
IRS receives valid data, it should keep a
count of the characters in the frame. If the
IRS slows the ISS down and the new data
frame received has the same block count as
the previous frame, the IRS knows the ISS is
resending data and should throw away the
appropriate number of characters. The ISS
and IRS need to be careful with these charac-
ter counts during double slowdowns (from 300
to 200 and then from 200 to 100 baud).

If the IRS tells the ISS to slow down after the
ISS has sent a data frame with the BK request
bit set, or if the ISS decides it wants to send a

54

speed transition diagram
Figure5

ISS

55

BK request while re-sending data in response
to a slowdown, the ISS should not set the BK
request bit in the slower data frames until the
data frame contains the last character sent in
the original.

The IRS cannot send a BK frame until it
receives a valid data frame since the CS3 of
the BK frame is an acknowledgment of valid
data. If the IRS is receiving duplicated data
due to a slowdown, it should not send a BK
frame until all the duplicated data is received.

RLEn Coding

An RLEn code is a 19 bit code made up of a
unique 14 bit H&man code followed by 5 bits
which represent a number n, O-31. RLEn codes
are found only in Huffman compressed data
frames and can never be the first code in a
data frame.

When an RLEn code is encountered in a data
frame, the previous character decoded in the
frame should be repeated an additional N
times, where N is a number which depends on
n and the number of bits used by the previous
H&f&an character according to the following
table.

length of previous character N
2 bits n+10

3 bits n+7

4 bits n+5

5-6 bits n+4

7-9 bits n+3

lo-16 bits n+2

An RLEn code may follow another RLEn code
immediately, indicating that the previous code,
which was just repeated, should be repeated
an additional N times.

Huffman codes are put into the data fields in
the order shown in Appendix 11. For example,

Figure 6
T h e q

the first few bytes of “The quick brown fox”
using Huffrnan compression would be formed
as shown in Figure 6.

And before interleaving or Golay encoding,
the bytes are grouped into tribbles

lA2 3BD 6FE A65

Golay Coding and Interleaving

Before a data frame is transmitted, the data
is regrouped into 12 bit tribbles. For example,
a 100 baud frame of “The quick brown fox”
using no compression would be formed like:

54 68 65 20 71 75 69 63 6B
20 62 72 6F 77 6E 20 66 6F
78 1E 1E 01 7E 64

And then grouped into tribbles

546 865 207 175 696 36B
206 272 6F7 76E 206 66F
781 ElE 017 E64.

The data is interleaved by sending in time the
MSB of each tribble, and then the next MSB,
etc. The bit sequence of the above data would
start:

time->
0100000000000101
1000100011011101
0010111111111101
1001010001001000
. . . 8 more groups of 12 bits

The ISS alternately sends f&mes of data and
Golay encoded data. Golay codes are unique
1%bit codes derived from 12 bits of data. The
C program in Appendix 10 shows how to gen-
erate the codes from the data and also how to
regenerate the correct data from the 24 bits of
data and Golay codes which have errors. The
correction algorithm will correct up to 3 bits
in error from the 24 bits of data and encoded
data. The Golay codes are generated from the

U i C k
0001101 000100 011 10 1111010110 11111 1101 010011 0010101
00011010 00100011 10111101 01101111 11101010 01100101 Ol......

1A 23 BD 6F EA 65

56

tribbles of data before interleaving, so that
“The quick brown fox”

546 865 207 175 696 36B 206 272
6F7 76E 206 66F 781 ElE 017 E64

becomes

083 092 57B lA7 F88 C46 A85 AF1
9AE 342 A85 291 114 BAF OS1 3 F 0 .

The tribbles are then interleaved as before,
starting with the MSB of the first tribble.

Note that the CRC of the original data is also
Golay encoded; there is no CRC generated
over the Golay encoded frame.

Note also that the inverse Golay function is
identical to the Golay function; in other words,
x=&(x)>.

FEC Transmissions

At this time there is no special G-TOR broad-
casting mode. AMTOR mode B is used for call-
ing CQ. A G-TOR unit in standby should be
able to receive AMTOR mode B FEC signals.

Monitoring G-TOR

Third party monitoring of G-TOR connects
can be very difficult due to the nature of the
G-TOR protocol. Although a data frame is

always 1.92 seconds long, it may have been
sent at 100,200, or 300 baud. The frame
received may be the Golay encoded form of a
data frame. The BK frame is different in that
it is not interleaved, and its CRC is calculated
over shortened data. The frame received could
also be inverted polarity; however, the inver-
sion would stay the sa.me during any particu-
lar connection. Since the Golay error correction
allows the IRS to copy data without ever get-
ting a proper CRC in one frame, a monitor pro-
gram should also go back 2.4 seconds to form
a correct frame if it is to be thorough. Again,
because of the nature of the G-TOR signal,
Carrier Detect or a PLL on bit transitions
cannot be used reliably, but a brute force algo-
rithm can be used. It would sample the data
stream at twice the baud rate for 100,200,
and 300 baud. Sampling at twice the baud rate
will take care of problems caused by sampling
near the edge of a bit. A program was written
to do a brute force algorithm using the fastest
assembly language techniques to check for all
possible G-TOR frames; the program ended
up using about l/3 of the available cycles of a
50 MHz 486DX.

G-TOR is a trademark of Kantronics Co., Inc.

57

Loc~IndlcatorOff
Val I&1mlicatorOFf

APPENDIX I
Ualtlngfor CcmctAdc

stEet1of1

es
al ay-fl ag

L

ti

No

r”lGolay-fl apl

4-1
Go1 au3 a@

Expectlng,CS-CSZ
Valld_lndica~
L&lndicatorOn
Bl ock~number-1

0Slave
b

Master
l-IV

N o
I

No

I

cl5wtirrg
for Rw

l-11

APPENDIX I I
Stancby/Uaitlng for feazive

stw?t1of1

ISS_lndlcator-OFF
LockJndlcator-OFF
Valld_lndlcatorQFF

Clear GTOR holdlng buffer

IControl-key-O
FE% transmlt7
0 t

Go to Go to
Standby Standby

1-I 1-I

I ,
m

Request
r

FEC transmlsslon

I

c>
ched< for
Connect

1-m

Gnmst in
P-

Q 8ask for
Camact Mod:

dud

A No

60

kl1t1n!J
for MX9Errcr_nae4 l

Fuzzy CSl
-Vdir’ Fuzzy cs2

mvd

7

cs3
nalVd

x

Fast
lm

l-VI

I I ’ I

I I I

N o

V

APPENDIX IV

1 1

6olavJlav-1 @lU-fl100

4 I

I-
63

APPENDIX v
Ymlg far Block
sktt2of4

.
Receive-Count4

l Lost ☯MS�

i
a

1

r

1-I

ErmrJwlt No
>TritS

e

Yes

-.

APPENDIX V
bhiting fw Block

Skt3of4

Receive-comt-0

Receive-cou1t-0
Error_cow@J

1

Speed-200
Vdli~indiCUtorOFF

SendSS-flatiS
c s - c s 4

*
Send CS

i

Waiting
fcf Bla3c

Speed-100r-7Valid_lnd~cabrGF
Send-CS-flag-C52

c s-css

-
5;

66

APPENDIX VI
Ualtlfg for turnaround AU!

sk!t1of1

bJa1tirg forc 1Turnaround
Ack

CSl

c (.

cs2
Received Received

,
Change-flag=0

IIAckBuf

I Block~umber=l
ExpectIngJS-flag=CSZ I

I ISSJndlcator=ON I

Send TurnaroundSend Turnaround

II

Chat-ye-flap0

CS5ycvd_flag=O

AckBuf9

-

Send-G-fl ag=CSl
BloclCnumber-0

I SSJndlcator-OFF
Receive-count=0
Rq-Baud=Auto

67

APPENDIX VII
Gettnlf subroutine

srleetlof4

pointer-startdmit
fmn!e&lffer

HaLcount-
Maximum number of
byterm-

fmmkeyboardbuffer
I

ByttLCOUflt’r-lNuklerofdata
tlyteshtitbffer

I)
remvecnt 14
removecnt2-0

Cflt.l-0
Cnt2-0

fullulrgo
flJl12nrpo

HuffmanGap,flsg-O
RLElflrM
RLE2,flrg-O
Number-0

GETBUF
ACKBUF

LNumber++

Unacked,data-0

4

Unacke&data-Lhackedata-Remove-count

I

removecntl*

T

sizcetlufcntcc * ox203
c I

cntl+-s izel
removecntl+t

APPENDIX VIIA-lGetbuf SubKlutineShezt2uf4

(Nmtxr-lPslze1
Yes

>14+5

APPENDIX Vll
G&bufsubNnJttn
shkt3of4

last=c
slMl&k)
Number-O

0removecnt I++
mll,S++

APPENOIX VII
c2x.M slAmutim

yleet4of4

Huffimn-flap0
strtus-Blocluwlt

removecntlt+
GTH,S++

* Yes

Restorepointer
Put RLE

Put Ihbr-Table[size]

f&!sfarp poinu?r
Put RLE

Put M&r-TableCsize]
L

J

r-lPad malt
fnmIxmt=
with idles

L-r’Huffman-flag-l

kstom pointm
Put RLE

Fut tlntmr-TableCsizeJ

A
IUlRberd)

1
I

t
Remove-count-removecntl

72

APPENDIX IX
Hufftnan decoding tree

Swt2of4

stat

75

76

Appendix 10
C Program for Golay Encoding and
Decoding
#include “stdlib. h”
#include “stdio. h”
#include “string. h”
#include “ctype. h”
unsigned g[4096l,wt[4096];
unsigned b[12]=

(OxDC5,OxB8B,0x717,OxE2D,OxC5B,0x8B7,
Oxl6F,0x2DD,0x5B9,OxB71,0x6E3,0xFFE);

void creategolay-table(void)
1
unsigned i j ,data;
for(i=O;i<4096;i++)

t
for(j=O,data=O;j<12;j++)

I.
ifli&(0x800>>j))dataA=b[j];
I

g[i]=data;
I

I
void create-weight-table(void)
(
unsigned ij ,data;
for(i=O;i<4096;i++)

(
for(j=Ox800,data=O;j;j>>=l)

(
if(i&j)data++;
1

wtli]=data;
I

1
main(argc,argv)

int argc;
char *argv[];
1
unsigned input,parity,i;
if(argc<2 I I argo3 I I isalnum(argv[l][01)==0)

(
printf(“g xxx displays golay coding of n

“hex value xxx\n”);
printf(“g xxx yyy displays results of error n

“correction of xxx data n
“and yyy parity\n”);

return(O);
1

if(sscanf(argv[l],“d/orr”,&input)!=l)
(
printf(“invalid data inputIn”);
exit(l);
1

if(input>OxFFF)

I.
printf(“input too large\n”);
exit(2);
1

creategolay-tableo;
create-weight-tableo;
if(argc==2)printf(“%33X ==> n

“%3.3X\n”,input,g[input]);
else

(
if(sscanf(argv[2],“%x”,&parity)!=l)

1
printf(“invalid parity input\n”);
exit(3);
1

if(parityAxFFF)
1
prinWparity too IkugeW);
exit(4);
1

if(wt[input*g[parity:l]<=3)
1
printf(“%3.3X and %3.3X ==> n

“%3.3X\n”,input,parity,g[parity]);
return(O);
1

for(i=O;i<l2;i++)
(
if(wt[inputAg[p~tylAb[i]]<=2)

1
printf(“%3.3X and %3.3X ==> n

“%3.3X\n’“,
input,parity,gCparity]*b[i]);

return(O);
1

1
if(wt[g[inputl*parityityl<=3)

1
printf(“%3.3X and %3.3X ==> n

“%3.3X\n”,input,parity,input);
return(O);
1

for(i=O;icl2;i++)
t
if(vpt[g[inputlApari.tyAb[i]]<=2)

(
printf(“%3.3X and %3.3X ==> n

“%3.3X\n”‘,
input,parity,inputA(Ox800~>i));

return(O);
I

I
printf(“cannot correctAn”);
I

return(O);
1

77

Appendix 11
Huff man Table
by ASCII Code

0x00
0x01
0x02
0x03
0x04
0x05
0x06
0x07
0x08
0x09
OxOA
OxOB
oxoc
OxOD
OxOE
OxOF
0x10
0x11
0x12
0x13
0x14
0x15
0x16
0x17
0x18
0x19
OxlA
OxlB
OxlC
OxlD
OxlE
OxlF
0x20
0x21
0x22
0x23
0x24
0x25
0x26
0x27
0x28
0x29

1111000011111000
1111000011111001
1111000011111010
1111000011111011
1111000011111100
1111000011111101
1111000011111110
1111000011111111
1111000011110010
1111000011110011
001101
1111000011110100
1111000011110101
001100
1111000011110110
1111000011110111
1111001110000000
1111001110000001
1111001110000010
1111001110000011
1111001110000100
1111001110000101
1111001110000110
1111001110000111
1111001110001000
1111001110001001
1111001110001010
1111001110001011
1111001110001100
1111001110001101
1111001110001110
1111001110001111
10 .('9
11110011101 4
110001101100 iit
0010100011011 ;#
0001010111001 ;$
110001101101 ;%
111100111001 ;&
110001101110 ;I
110011011 ;(
110011100 ; >

0x56 1100011000

Ox2A 001010001100
Ox2B

0x57 0001010100

111100111110
ox2c 1100101

0x58

Ox2D

0001010111011

00010101111
Ox2E

0x59 1111010111

1100100
Ox2F 11110011110
0x30 11000111
0x31 001010000
0x32 0001011010
0x33 0001011011
0x34 0001011100
0x35 0001010101
0x36 0001011101
0x37 0001011110
0x38 0001011111
0x39 0001010010
Ox3A 00101000111
Ox3B 11110000110100
ox3c 0001010111010
Ox3D 1111000010
Ox3E 111100111111
Ox3F 1100110101
0x40 0001010111000
0x41 00101001
0x42 11001111
0x43 11110001
0x44 11110100
0x45 11000000
0x46 11001100
0x47 00010100111
0x48 0010100010
0x49 11110010
ox4A 1100000110
Ox4B 1100110100
ox4c 110011101
Ox4D 111101010
Ox4E 111100000
Ox4F 000101000
0x50 000101100
0x51 00101000110101
0x52 110000010
0x53 1111011
0x54 0001101
0x55 1100000111

.*

;

9

V

;+

;,

;

;-

;-

W

; I

;X

; 0

;

;

Y

1
;2
;3
;4
;5
;6
; 7
;8
; 9
. .9'
;;
;<
l -

9-

2

; ?

;
@

;
A

;B
;C
;D
;E
;F
;G
;H
;I
;J
;K
;L
;M
;N
;0
;P
; Q
;R
;S
;T
;U

Ox5A 1100011001 Z
Ox5B 00101000110100 ;[
ox5c 11110000110101 ;\
Ox5D 11110000110111 ;]
Ox5E 11000110111111 ;"
Ox5F 111100001100 ;
0x60 11110000111000 ;-
0x61 01000
0x62 0000110
0x63 010011
0x64 00111
0x65 011
0x66 0000111
0x67 000111
0x68 000100
0x69 1101
Ox6A 00010100110
Ox6B 0010101
Ox6C 000010
Ox6D 001011
Ox6E 0101
Ox6F 010010
0x70 11000010
0x71 1111010110
0x72 1110
0x73 00100
0x74 00000
0x75 11111
0x76 11000011
0x77 0001100
0x78 1100011010
0x79 0001010110
Ox7A 1100010

;a
;b
F
;d
;e
;f
;g
;h
;i

..¶J
;k
; 1
;m
;n
;0
;P
;9
;r
P
;t
;u
;v
W
;x
;Y
P

Ox7B 11000110111110 ;(
Ox7c 11110000110110 ;I
Ox7D 11000110111101 ;)
Ox7E 11000110111100 ;-
Ox7F 1111000011110001
111100110xxxxxxx ;upper ascii
0x80 1111001100000000
OX81 1111001100000001
OX82 1111001100000010
etc.
IDLE 1111000011110000
RLE 11110000111001

UNUSED 1111000011101

78

Huffman Table
by HuffmanCode

0x20 10
0x65 011
0x69 1101
Ox6E 0101
0x72 1110
0x61 01000
0x64 00111
0x73 00100
0x74 00000
0x75 11111
OxOA 001101
OxOD 001100
0x63 010011
0x67 000111
0x68 000100
Ox6C 000010
Ox6D 001011
Ox6F 010010
ox2c 1100101
Ox2E 1100100
0x53 1111011
0x54 0001101
0x62 0000110
0x66 0000111
Ox6B 0010101
0x77 0001100
Ox7A 1100010
0x30 11000111
0x41 00101001
0x42 11001111
0x43 11110001
0x44 11110100
0x45 11000000
0x46 11001100
0x49 11110010
0x70 11000010
0x76 11000011
0x28 110011011
0x29 110011100
0x31 001010000
ox4c 110011101
Ox4D 111101010
Ox4E 111100000
Ox4F 000101000
0x50 000101100

.(’
2

;e

;i
;n
;r
3
;d
P
;t
;u
;LF
;CR
;c
;g
;h
;1
P
;0
;,
;-
;S
;T
;b
;f
;k
;w
7
;0
;A
;B
;C
;D
;E
;F
;I
;P
Y
;(
; >
; 1
;L
;M
;N
;0
;P

0x52 110000010
0x32 0001011010
0x33 0001011011
0x34 0001011100
0x35 0001010101
0x36 0001011101
0x37 0001011110
0x38 0001011111
0x39 0001010010
Ox3D 1111000010
Ox3F 1100110101
0x48 0010100010
Ox4A 1100000110
Ox4B 1100110100
0x55 1100000111
0x56 1100011000
0x57 0001010100
0x59 1111010111
Ox5A 1100011001
0x71 1111010110
0x78 1100011010
0x79 0001010110
0x21 11110011101
Ox2D 00010101111
Ox2F 11110011110
Ox3A 00101000111
0x47 00010100111
Ox6A 00010100110
0x22 110001101100
0x25 110001101101
0x26 111100111001
0x27 110001101110
Ox2A 001010001100
Ox2B 111100111110
Ox3E 111100111111
Ox5F 111100001100
0x23 0010100011011
0x24 0001010111001
ox3c 0001010111010
0x40 0001010111000
0x58 0001010111011

;R
;2
;3
;4
;5
; 6
; 7
; 8
; 9
l -

>--

l ?2�

;H
;J
;K
;U
;V
;W
;Y
;Z
;Q
;x
;Y
;!
;-
; I
. .3'
;G
; jft
;
;%
;&I
;
.*9
;+
7
;-
;#
;$
;<
; @I
;X

UNUSED 1111000011101
Ox3B 11110000110100 ;;
0x51 00101000110101 ;Q
Ox5B 00101000110100 ;[
ox5c 11110000110101 ;\
Ox5D 11110000110111 ;]
Ox5E 11000110111111 ;"

0x60 11110000111000 0'
Ox7B 11000110111110 ;(
Ox7c 11110000110110 ;I
Ox7D 11000110111101 ;)
Ox7E 11000110111100 ;-
RLE 11110000111001
0x00 1111000011111000
0x01 1111000011111001
0x02 1111000011111010
0x03 1111000011111011
0x04 1111000011111100
0x05 1111000011111101
0x06 1111000011111110
0x07 1111000011111111
0x08 1111000011110010
0x09 1111000011110011
OxOB 1111000011110100
oxoc 1111000011110101
OxOE 1111000011110110
OxOF 1111000011110111
0x10 1111001110000000
0x11 1111001110000001
0x12 1111001110000010
0x13 1111001110000011
0x14 1111001110000100
0x15 1111001110000101
0x16 1111001110000110
0x17 1111001110000111
0x18 1111001110001000
0x19 1111001110001001
OxlA 1111001110001010
OxlB 1111001110001011
OxlC 1111001110001100
OxlD 1111001110001101
OxlE 1111001110001110
OxlF 1111001110001111
Ox7F 1111000011110001
111100110xxxxxxx ;upperascii
0x80 1111001100000000
OX81 1111001100000001
OX82 1111001100000010
etc.
IDLE 1111000011110000
FortheHuffmandecodingtree,
seeAppendix9.

79

