
Link Level Protocols Revisited

Phil Kam, KA9Q

Brian Lloyd, WB6R QN

ABSTRACT

The LAPB protocol on which the connected mode of AX.25 is based was origi-
nally designed for point-to-point wire links, not shared multiple-access radio chan-
nels. This paper discusses the deficiencies of LAPB in the radio environment and
suggests several improvements. These) include the simple (adjusting existing TNC
parameters), the moderate (upward compatible implementation changes) and the
radical (replacing LAPB altogether with a simpler and inherently much more
efficient protocol).

We believe that these approaches deserve serious attention by the amateur
packet community. The suggested AX.25 congestion control techniques should be.
used as soon as possible in existing networks, while the new “ACK-ACK” protocol
should be considered in the design of backbone networks and eventually user-
network links.

1. AX.25 in Review
The Amateur Radio Link Layer Protocol

AX.25 [I] actually consists of two distinct sub-
layers. The upper sublayer is a connection-
oriented protocol almost identical to the Link
Access Procedures Balanced (LAPB) from
CCITT X.25 [2:1. Prepended to the LAPB con-
trol field in AX.25, however, is a special
address field containing ASCII-encoded ama-
teur radio callsigns and substation IDS (SSIDs).
Each AX.25 frame contains, at a minimum,
the callsign/SSTD of the sender and intended
receiver of the frame. Optionally, it may also
contain a sender-specified list of digital
repeaters, or digipeaters, through which the
frame should be routed to its destination.

This additional lower sublayer contains
most of the changes made to enable it to func-
tion in an amateur radio environment. An
AX.25 address header always contains full
source and destination addresses. Therefore it
meets the definition of a “datagram” protocol,
and we will call this field the “datagram sub-
layer” of AX.25.

The LAP.B (upper) sub-layer of AX.25
belongs to th.e general c lass of “ARQ”

(automatic request-repeat) protocols. It uses
receiver acknowledgements (“ACW’) along
with sender timeouts and retransmission to
increase the reliability of the service provided
to higher layer protocols above that of the raw
datagram sublayer.

The performance of an ARQ protocol
depends heavily on how closely its designe
assumptions are met in practice. L(APB was
designed for a full-duplex, point-to-point chan-
nel with low bit error rates; thus it performs
poorly when used on a half-duplex, multiple-
access radio channel with a high error rate.
The remainder of this paper will discuss the
special requirements of the amateur environ-
ment, analyze LAPB with respect to these
requirements, and propose several alternatives.
These range from a set of backward-compatible
provisions to improve the LIAPB retransmission
algorithms in the presence of channel conges-
tion, to the specification of an entirely new,
connectionless link level control protocol that
is both easier to implement (especially in the
“multiple connect” case) and inherently much
more efficient than LAPB.

5.25

2. Packet Radio Protocol Requirements
A good packet radio protocol must do

four things:

1 . Deliver the user’s data as reliably as pos-
sible.

2 . Deliver the user’s data as quickly as pos-
sible.

3 . Use the shared channel capacity as
efficiently as possible.

4 . Be reasonably easy to implement.

Naturally, these goals conflict. For exam-
ple, on a full-duplex, point-to-point channel,
the third consideration does not apply. The
protocol is free to use as much transmission
bandwidth as it chooses to maximize the other
criteria, since it would otherwise go to waste.
On a shared packet radio channel, however, a
socially well-adjusted protocol should attempt
to use as little channel bandwidth as possible to
move a given amount of data, even at the
expense of increased user delays. As we will
see, this makes several features of LAPB
undesirable.

3. Sliding Windows vs Stop-and-Wait
LAPB is a sliding window protocol. This

means that it is possible to send more than one
frame before an ACK is received for the first
outstanding packet. The maximum number of
frames that may be transmitted before the
sender must stop and wait for an ACK is
known as the window size. For the standard
form of LAPB used in AX.25, the window size
cannot exceed 7. Most implementations allow
the user to decrease this limit further (e.g., the
TAPR MAXFRAME option).

3.1. Pipelining
Sliding window protocols are popular

because they allow the full utilization of high
speed, furl duplex circuits with long round trip
delay. For example, a satellite path has a
round trip delay of .5 seconds. If only one
frame can be sent at a time, the transmitter
must remain idle at least .5 seconds before an
ACK could return, enabling it to transmit
another frame. While the effect of this delay
can be reduced by making each frame very
long
one f

ever

it cannot be eliminated unless more than
‘rame can be “in the pipe” at a time.

Pipelining causes major problems, how-
when the channel is half duplex. Since

the receiver usually attempts to acknowledge
incoming data as soon a.s the channel becomes
clear, it is likely to collide with the sender if
the sender attempts to send additional data
without first waiting for the ACK for the data
already sent. 1 Pipelining on a half duplex radio
channel is therefore a. good example of a
socially undesirable technique that attempts to
reduce user delay at the expense of overall
channel efficiency.

3.2. Transmission Efficiency
Given that a user wants to send a certain

amount of data, a packet radio controller must
control several parameters to packetize that
data for transmission most efficiently.

Since it operates on a half-duplex chan-
nel, the controller must first decide how much
to send on each transmission before switching
to receive and waiting for an ACK. Sending
more on each transmission reduces channel
overhead by allowing e’ach returning ACK to
“cover” more data. It also increases the max-
imum throughput attainable on a channel with
a given propagation dellay, since this rate can
never exceed one window full per round trip
interval. On the other ‘hand, smaller transmis-
sions are smaller targets for noise and interfer-
ence.

Second, once it has decided to send a cer-
tain amount of data in a transmission, the data
must be divided up into one or more consecu-
tive frames. 2 The fewer frames used, the
smaller the effects of frame overhead. On the
other hand, a single large frame is unusable
even if a single bit error occurs near the end,
so sending the data as a burst of smaller frames
might allow the receiver to “salvage” at least
the beginning of the transmission. (Note that
the “go-back-N” recovery strategy of LAPB
requires that all frames received after an error
be discarded and retransmitted, even if the
later frames are received correctly).

The sender therefore controls three
parameters: transmission size, frame window

1 Note that TNCs capable of “multi-connect”
operation (i.e., able to manage simultaneous connec-
tions with several different stations on the same chan-
nel) should allow unacknowledged data on only one
connection at a time.

2 Although pipelining is to be avoided, more than
one frame may be sent in a single transmission (i.e.,
without interrupting carrier between frames).

5.26

size and maximum frame size, and setting any
two determines the third. Unfortunately,
values that improve performance in the pres-
ence of noise conflict with those that minimize
overhead. Therefore, it follows that there
should be an optimal set of parameters for a
given channel when operating at a given error
rate and with a protocol that has a given header
and ACK overhead.

This is indeed the case. A program3 was
written to compute analytically the overall
expected efficiency of an AX.25 transmission,
given the following parameters:

1 . A Gaussian bit error rate (each bit error
being independent of all others, as would
occur with “white” thermal noise).

2 . A transmission size in bits.

3 . The number of frames into which to
divide the transmission.

4 . The overhead in bits of a frame header
and an ACK.

For all bit error rates studied (lo-* to
10 -‘, ranging from a link that is almost com-
pletely unusable to one so good that almost
anything works), maximum overall efficiency
was always obtained when each transmission
was limited to one frame. As expected, the
optimum transmission (and frame) size
increases with d.ecreasing bit error rate. The
efficiency of a large (and suboptimal) transmis-
sion can be improved by dividing it up into
several consecutive frames. However, this is
always less than the efficiency attained when
the message is divided up into smaller single-
frame transmissions, even when the extra ACK
overhead is taken into account. In other
words, a “stop-and-wait” (i.e., window size
one) protocol with an appropriate frame size
always uses the channel more efficiently than a
sliding window protocol with a window size
greater than one.

The “real world,” though, is a bit harder
to characterize because many (if not most)
errors are caused by collisions rather than
insufficient SIN ratios. Errors are therefore
much more likely to occur in bursts, with
entire transmissions often rendered useless.
Collisions are harder to model than thermal
noise, so their effect on the efficiency of a

-
3 See Appendix 1 for the derivation of the formu-

las used in this program.

sliding window protocol is harder to evaluate.
However, it seems reasonable to argue that the
“salvage value” of a multi-frame transmission
that has encountered a collision is likely to be
even less than one corrupted by thermal noise.
This is because in CSMA, collisions tend to
occur near the beginning of transmissions, dur-
ing the “collision window” represented by the
time needed for one round trip propagation
delay. Since a hit in the first frame of a
transmission renders all later frames unusable,
dividing up the transmission into multiple
frames simply increases header overhead
without improving net performance.

Since we have shown that sliding win-
dows are suboptimal for our application, and
because they account for much of LAPB’s
complexity, the first of our motivations for
scrapping LAPB altogether and designing a new
protocol better tailored to the radio environ-
ment becomes apparent. However, we recom-
mend that current AX.25 TNCs be operated in
a stop-and-wait mode. Simply set MAX-
FRAME to 1 and take steps to adjust the
packet size to a value appropriate for the chan-
nel. This ensures that new data can never col-
lide with a returning ACK, regardless if the
implementation already enforces a “single out-
standing transmission” rule. One implementa-
tion strategy that might be useful here is to
hold additional outgoing data in a buffer until
any previously sent data has been ack-
nowledged, and then send as much as possible
in the next data packet subject to the max-
imum packet size limit. This is much more
efficient than “pre-packetizing” outgoing data
according to special characters in the data (e.g.,
carriage return), since short lines would other-
wise result in small transmissions and poor
throughput. A similar strategy, the Nagle Rule
[lo] has become widely accepted by implemen-
tors of the ARPA Transmission Control Proto-
col (TCP), the most common transport (level
4) protocol used in the ARPA Internet [6,7].

One final issue, that of “Selective
Reject ,” becomes moot when LAPB is
operated in a stop-and-wait mode. If only a
single frame can be outstanding at any one
time, there is no need for this special meas-
ures. In any event, simulations have: shown
that Selective Reject actually degrades perfor-
mance relative to “standard’:’ LAPB, especially
on links with large window sizes, when errors
occur in bursts (as they often do in the real

world). [9] The same paper proposed an alter-
native known as “multi reject” but this is
again unnecessary if the window size is one
frame.

4. Congestion Collapse
Because LAPB made no provisions for

channel sharing, as now implemented on ama-
teur packet radio TNCs it is extremely prone to
channel “congestion collapse,” a stable condi-
tion where virtually every transmission results
in a collision. Congestion collapse can be
avoided only when TNCs become able to adapt
themselves dynamically to the load offered by
other TNCs. This section proposes congestion
control algorithms that should be made part of
the formal AX.25 protocol specification. They
will be of little help unless widely imple-
mented, because there is little incentive (other
than altruism) for one to use them unless
everyone does.

Several factors combine to cause our
currently severe congestion problems. The
first is jump-on, where several stations with
traffic to send collide with each other the
instant the channel becomes free. The second
and more serious problem is caused by hidden
terminals. These are stations unable to hear
(and defer to) transmissions from certain other
stations. When this happens, the CSMA (car-
rier sense multiple access) algorithm breaks
down and collisions become very frequent.
Kleinrock [3] has shown that just one or two
hidden terminals in a packet radio network are
often enough to degrade performance below
that of slotted Aloha, and it doesn’t take many
additional hidden stations for performance to
approach that of pure Aloha. Gower and Jubin
[4] observe that carrier sensing actually makes
things worse in the presence of hidden stations
because it aggravates jump-on.

A more fundamental problem with packet
radio is that all dynamic multiple-access
schemes (regardless of carrier sensing, hidden
terminals, delay and so forth) exhibit a “nega-
tive resistance” characteristic at high load lev-
els. As the offered load increases, the collision
rate increases and usable throughput decreases.
While the exact point at which optimum
throughput is obtained on a given channel
varies widely depending on the algorithm and
the station characteristics, there is always the
need to control the offered load dynamically if
it is to be operated efficiently. Unfortunately,

this is not true for current AX.25 implementa-
tions.

4.1. Retransmission Backoff

The most important change that must be
made to stabilize the A1X.25 protocol is for suc-
cessive retransmissions caused by the non-
receipt of an ACK to be spaced out further and
further over time. T’his technique is called
back08 and many variations exist.

The most well-known example is binary
exponential backofi used in the Ethernet local
area network. [5] In Ethernet it is possible to
detect a collision during transmission. When
this occurs, the transmission is aborted and a
backoff timer is set to a random value distri-
buted evenly between zero and a number that
doubles after each unsuccessful attempt. In
mathematical terms, th.e timer is set according
to the expression

T = S random (0,2min(ny10))

where random returns a random number
evenly distributed between its two arguments,
n is the retry number, S is a proportionality
constant, and the min function sets a max-
imum bound on the retransmission interval.
This causes successive attempts by each station
participating in a collision (there could be
many stations all jamming each other simul-
taneously) to be spaced out over rapidly
increasing intervals until the offered load on
the channel drops to the point where successful
transmissions can occur. As usual, should
some retry limit (typically 16) be reached the
packet is abandoned.

Base 2 gives reasonable performance and
is easy to implement. However, other values
can be used in the exponential calculation.
Smaller bases back off less quickly, while larger
bases cause rapid increases in the retransmis-
sion interval. If retransrnissions are more
often caused by poor link margins than by col-
lisions, a smaller basle (i.e., slower backoff)
may be appropriate at the expense of slower
adaptation to congestion.

Packet radio differs from Ethernet in that
there is no immediate indication of a collision;
one can be detected only by the non-receipt of
an ACK. Furthermore, the interval between
transmission of a packet and the receipt of an
ACK will vary depending on external factors
such as channel speeds and the number of digi-

5.28

peaters. Therefore, more work is needed to
adapt our backoff strategy to packet radio.

4.2. Retransmission Timing

In the most common implementations of
AX.25 the es t imated in terval between
transmission of a packet and reception of its
ACK is called FRACK and is sent manually.
An ad-hoc rule is used to increase it according
to how many digipeaters are included in a con-
nection.

There are several problems with this
approach.

1 . A constant value cannot adapt to chang-
ing channel conditions. A value that
gives efficient and quick response when
the channel is lightly loaded may cause
many unnecessary retransmissions when
ACKs are slow in returning because of
channel load.

2 . Few users bother to tune this value to an
appropriate value. If anything, users are
more likely to set it too small because
they get anxious when their TNCs don’t
transmit when they “should”!

The presence of digipeaters is what makes
this problem so difficult. There is no direct
way to tell how much channel loading exists in
sections of the network out of direct radio
range, and hence no way to predict in advance
how long one should wait before assuming that
a transmission was lost in a collision. When
digipeaters are phased out in favor of direct
links between adjacent network nodes, a fixed
interval with a timer that runs only when the
channel appears to be clear should work well.
In the meantime, however, we can borrow a
technique from TCP and attack the static
FRACK problern on long digipeater routes by
computing it automatically. To do this we
measure the time between the transmission of
a given packet and the receipt of its ACK,
always making sure that the retransmission
timer is greater than this period. A “round
trip timer” is created, providing continuous
packet-by-packet measurements that take into
account changing channel and digipeater load-
ing.

Measured round trip times are only edu-
cated guesses about future behavior, because
the path is statistical in nature (e.g., someone
might unpredictably start a large file transfer
through a remote digipeater). Note also that

once the round trip timer is started, it should
be allowed to run even if the packet being
timed is lost and retransmitted. While this can
cause anomalously large “spikes” in the round
trip time measurements, the alternative (res-
tarting the timer when retransmitting) is worse
because an ACK for a previous transmission of
the packet might come back immediately after
the retransmission. This would yield an
erroneously small estimate that might never be
corrected. In any event, it is a good idea to
process these measurements in two ways
before using them to set the retransmission
timer.

1 . Compute a running average over several
measurements to smooth out random
fluctuations.

2 . Include a “grace” factor to allow for sud-
den increases in the round trip delay.

The TCP specification recommends this
formula for smoothed round trip time compu-
tation:

T I
s = a T\ + (II-cv) T

where Ts’ is the newly computed Smoothed
Round Trip Time, TS is its previous value, T is
the round trip time encountered on an ACK
just received, and cy is a “tuning” constant
ranging between 0 and 1. Large values of cy
cause T, to react slowly to changes in meas-
ured round time, while small values cause it to
respond more quickly. The TCP spec recom-
mends an cy value between 0.8 and 0.9. Dave
Mills, W3HCF has shown [8] that using
different values for cy depending on whether
the delay is increasing or decreasing has merit
in the Internet environment. His experiments
suggest using cy = 3/4 when T> TY and cy =
15/16 when T< T, to give a “fast attack” and
“slow decay” response characteristic.

Once 7” h a s b e e n c o m p u t e d , T C P
specifies that it be multiplied by another tuning
constant, p, to arrive at the final retransmission
timer value. The recommended value for p is
2.0, i.e., the transmitter waits two round trip
times for an ACK before retransmitting. The
TCP specification also recommends that
repeated unsuccessful transmissions be spaced
out, although the exact back’off algorithm is not
specified.

For AX.25 use, we can combine the
round trip timer from TCP with the binary
exponential backoff algorithm from Ethernet

!5‘2 9

and use them together to set the retransmis-
sion timer. To do this, we first observe that we
should always wait at least one round trip inter-
val (preferably p intervals, to allow a grace
interval as in TCP) for an ACK to come back.
One possible result is the following:

T = 7; p random(l,2”)

When packets are not being lost, the round trip
timer will always be set to p times the
smoothed round trip interval. Should several
retransmissions occur in a row, however, both
the average retransmission interval and vari-
ance will double on each retry.

4.3. Persistence

The round trip timing and backoff algo-
rithms just described help stabilize the channel
and prevent congestion collapse through nega-
tive feedback that attempts to operate the
channel near the peak of its throughput
efficiency curve. These are especially helpful
when many hidden terminals are present, limit-
ing the maximum attainable channel efficiency.
Even without hidden terminals, however,
efficiency can still suffer greatly in a heavily
loaded network because of the jump-on prob-
lem.

One way to alleviate this is to change how
stations with packets to send behave when they
find an idle channel. Our current algorithm,
namely “transmit as soon as you hear the
channel go clear,” is formally called l-persistent
CS’MA and leads to the jump-on problem. A
less greedy alternative is p-persistent CSMA,
where each station waits a random amount of
time before transmitting even when the chan-
nel seems to be clear. Each station generates
an evenly distributed random number between
0 and 1 and compares it to a constant, p, which
also ranges between 0 and 1. If the random
number is less than p, the station transmits;
otherwise it waits a small amount of time
(called the slot time, ideally one round-trip pro-
pagation delay) and repeats the procedure. As
p approaches zero, channel efficiency theoreti-
cally approaches 100%. Unfortunately, how-
ever, delay also approaches infinity! For any
non-zero value of p, however, the packet will
eventually be sent after finite delay although
channel efficiency will decrease.

Persistence works because the stations
waiting for the channel will “spread out” their

transmission attempts once the channel goes
clear. Assuming only lone station decides to
transmit in each slot, or round trip interval, the
other stations on the channel will hear and
defer to it before the;y attempt to transmit
themselves.

Clearly there is an optimum value of p
for a given level of channel activity. If p is too
large, too many stations will jump on each
other in the first slot. If p is too small, many
slots will go to waste be:fore the stations even-
tually transmit, and transmission delays will
increase unnecessarily. It is therefore best to
set p dynamically, if possible. At low load lev-
els, p=l gives the best performance; as the
channel reaches 75-80°/ci offered load (i.e., the
channel appears busy 75-800/o of the time with
either good packets or collisions) the value
should be decreased.

The backoff algorithm given in the previ-
ous section can be viewed as a way to adjust
the value of p dynamically when timeouts
occur, since doubling the retransmission inter-
val corresponds to halving the value of p. The
only real difference is tihat the backoff interval
is evenly distributed while the persistence
“timer” is exponentially distributed.

T A P R TNCs p ionee red t he u se o f
DWAIT, a persistence-like feature. It should
be enhanced to provide true persistence (i.e.,
by randomization). A worthwhile research pro-
ject would be the development of a good algo-
rithm for the real-time evaluation of p, with
the goal of incorporating it into a future revi-
sion of the AX.25 specification. One possible
approach is to sample the state of the DCD
line periodically and estimate the channel
activity. The value of p could then be found
in a lookup table. If more retransmissions
occur than expected for the measured amount
of traffic (e.g., due to hidden terminals), then
p could modified as appropriate.

5. Some Final ThoughIts on Congestion Con-
trol

Congestion control in packet radio net-
works and packet switching networks in general
are notoriously difficult problems and have
received much research attention. The sugges-
tions made here, however, should greatly
alleviate the problem and make our AX.25
digipeater networks halfway usable under heavy
load.

5.30

However, it may turn out that radically
new approaches to transmitting bits and packets
over amateur radio links will hold a better solu-
tion.

1 . Spread spectrum with different spreading
sequences iassigned to each receiver elim-
inates channel collisions except for the
less likely case where two transmitters
attempt to send to the same receiver at
the same time.

2 . Since the received signal levels in a
packet radii0 network usually vary widely,
modulation methods and forward-error-
correcting (FEC) techniques that exhibit
higher degrees of “capture” may help by
minimizing collisions where nobody
“wins.”

3 . Busy Tone Multiple Access (BTMA) [3]
involves receivers indicating on a separate
radio channel (with a “busy tone”) that
they are actively receiving a packet. Sta-
tions monitor the busy tone rather than
the data channel to determine when to
defer. If the power levels and propaga-
tion conditions between the main and
busy-tone (channels are symmetric, it is
possible with BTMA to avoid completely
the hidden terminal problem. While this
technique requires twice as many radios
(along with th e ability to operate in full
duplex, although this could be crossband)
the improvement in throughput could
easily more than double.

4 . Conventional “bent-pipe” analog or
regenerative digital repeaters of the split-
frequency type also reveal hidden termi-
nals. While this is contrary to the trend
toward digipeaters, they may be the most
expedient way to solve a particularly
difficult case.

This list only touches the list of possible
approaches to congestion control. Above all,
we need to leave plenty of room for experi-
mentation into these and other “low level”
problems. Our experience has shown that
there cannot be a single, “standard” link level
protocol that is optimum everywhere. Each
link protocol mu.st be customized to a specific
environment, and the network architecture
(e.g., higher level protocols) must take this
fact of life into account and be flexible enough
to accommodate them all.

6. A Replacement for LAPIB

As we have seen, LAPB is out of its
natural element (a reliable, full duplex point-
to-point link) when it is used on a lossy, half
duplex packet ra.dio channel. LAPB lacks the
features needed to control congestion and
improve performance on bad links. It also con-
tains unnecessaryI “features” that increase the
size of an implementation and may actually
degrade performance. This section is an
attempt to apply the lessons learned from
LAPB to the design of a new protocol, one
much better suited to the amateur radio
environment.

6.1. Link Level Acks versus Connections

An important point needs to be stressed
here. Link level ackrzoM’/eC,!,~Ct77e~ltS (desirable
for performance reasons when operating on a
lossy channel) do not necessarilv imply link
level cm~~ectiom. A packet switch operating in
a large metropolitan area m;jy serve a total of
several hundred users, but only a sm:lll fraction
may be active at any one time. Why require
the switch to maintain hundreds of mostly idle
link level protocol control blocks for all these
users, or alternatively saddle users with the
burden of setting up a link level “connection”
to their local switch before they may communi-
cate with their final destinations’!

Veterans of the amateur packet radio
“protocol wars” will recognize this as an argu-
ment for datagram-oriented networks. We
believe that the connection- (or virtu;il-circuit-)
oriented nature of LAPB is another major con-
tributor to its complexity. We further believe
that a redesigned protocol that enhances link
level reliability with acknowledgements ~~i~/~~~t
explicit connection management procedures
will be both simpler and easier to implement.

6.2. Window Control
As shown by our analvsis of LAPB, slid--

ing windows are unnecessary in a half duplex
packet radio environment, so our replacement
is a simple stop-and-wait protocol. Even when
traffic is pending to more than one station,
only one data packet may be sent at a time.
An ACK must be received for this packet (or a
“give up” interval exceeded) before another
packet can be sent to this or anv other station.
This avoids the ACK collisions tha.t could
occur if we were to sent traflic to two or more

5.3 1

stations at one time. This also simplifies the
implementation, since all traffic to be sent on a
given channel can be kept on a single queue
regardless of destination.

6.3. Acknowledgement Piggyback
Another feature of LAPB that makes its

contribution to complexity is the ability to
“piggyback” an ACK on a data frame traveling
in the reverse direction. This is a difficult
feature to use in practice, because there is sel-
dom a data frame available at precisely the
right time on which to piggyback an ACK.
Most applications operate in a “pseudo half
duplex” mode: one host sends one or more
packets to its peer, and one or more packets
later flow in the opposite direction. Some pro-
tocol implementations delay the transmission
of ACKs in the hope that a higher layer will
soon generate an outgoing data frame on which
it could be piggybacked. This seldom succeeds,
however, because any delay must be kept short
both to prevent unnecessary retransmission and
to keep the round trip time small enough to
avoid affecting throughput. We therefore felt
that ACK piggybacking was not necessary in
our protocol.

6.4. Acknowledgment Retransmission
In LAPB, a lost ACK causes the sender

to timeout and retransmit a data frame, even
though it has already been received correctly.
When loss rates are low, this is not a serious
problem. However, should a substantial frac-
tion of the ACKs be lost, the unnecessary
retransmission of data frames by the sender
merely to elicit ACK retransmissions from the
receiver can cause a considerable loss of per-
formance. This problem was first recognized
eleven years ago by the designers of the first
packet radio network, the ALOHANET, who
proposed an elegant solution that we have
dubbed the ACK-ACK protocol4 Ill].

As its name implies, the ACK-ACK pro-
tocol provides for the acknowledgement and
retransmission, if necessary, o f ACKs t o
prevent the unnecessary retransmission of data
packets. Let’s look at an example using LAPB
more closely to show why ACK-ACK gives
better performance. Assume that the probabil-

4 We considered calling this the “Bill the Cat Pro-
tocol,” but thought the reference too obscure.

ity of a data packet or ACK being successfully
received in one try is pG/ or pa, respectively. In
order for the sender to expect to receive one
ACK, the receiver will, on the average, have to

1
transmit its ACK - times. In order for the

Pa
receiver to transmit this many ACKs, however,

1
it will also have to relceive - data packets.

Pa

Therefore, the sender can expect to send
1 1

- X - packets for ea.ch ACK received. For
Pd Pa
example, if the probability of a data packet or
ACK being successfully received is 25%, then
Pd = Pa = 0.25, and the sender will have to
send each data packet an average of sixteen
times before an ACK is finally received and it
can continue with the next data packet! On
such a link, a greater attempt by the receiver to
ensure receipt of its ACKs by the sender is
worthwhile.

Given that nothing can be done about the
“raw” value Of pay then the only thing the
receiver can do to increase reliability is to
retransmit ACKs whenever necessary. If the
receiver were to retransmit each ACK up to N
times, then the probability that at least one
attempt succeeds is

1 - (ll-pa)N

If the probability that a data packet is success-
fully received is pd, then the expected number
of data packet transmissions that result when
the receiver makes N alttempts to transmit each
ACK is

1 1
- ’ I-(l-pa)*Pd

For our earlier example where &j = pa = 0.25,
if N=5 then the probability becomes .76 that at
least one ACK will ma.ke it back to the sender.
This decreases the expected number of data
packet transmissions from 16 to 5.25, a sub-
stantial improvement.

The receiver does this by setting a timer
when it transmits its ACK and retransmitting it
if an acknowledgement of its acknowledgement
(an “ACK-ACK”) does not return before the
timer expires. The receiver may also accept
the next data packe:t from the sender as
confirmation that its ACK of the preceding one
was accepted, because the sender will not con-
tinue with the next data packet until the one

5.32

outstanding has been acknowledged (remember
this protocol operates in stop-and-wait mode).
This means that when one station sends a
steady stream of traffic to another, no addi-
tional packets over the conventional protocol
case are sent. Only at the end of a burst of
traffic (or after an isolated packet) is an extra
ACK-ACK packet generated. Clearly, the
ACK retransmission timer must be shorter
than the data retransmission timer; this ratio
corresponds to the value of N in the above
equations, the number of times the receiver
will attempt to retransmit the ACK before the
data packet is retransmitted unnecessarily.

To make the protocol reliable, we need to
include a f r ame ident/Jit)r (ID) with each
transmitted ‘data frame and ACK. The ID
ensures that the sender and receiver do not get
out of step, possibly losing or duplicating a data
frame. The ID need not be a sequential value;
it need only be different from one frame to the
next. If the receiver receives a data frame with
the same source address and ID as the last
received frame, a normal ACK is sent but the
frame is otherwise ignored as a duplicate.

The ACK-ACK protocol can be viewed as
establishing an implicit, unidirectional “con-
nection” with the first data frame, which exists
only as long as there is data to send. Once an
ACK-ACK is sent to show that no more data is
available, the sender and receiver need retain
no further state (i.e., addresses and ID) and
the “connection” is torn down. The sender
then repeats the: process with any other station
for which it has traffic.

Only one implicit “connection” exists at
any moment (although the destination to which
we are “connected” can change very rapidly)
since our half duplex operating rules require
that only one data packet be outstanding at a
time. If a thirld station sends us data while
we’re already exchanging data with another sta-
tion, then this new data is put on a queue and
processed after we’ve completed our current
transfer sequence. If a data frame requesting
an ACK should arrive from a new station, we
do not immediately acknowledge it because
that would encourage it to send more data.
This might interfere with the station we’re
already communicating with, so we hold this
frame on a queue for processing once we
return to an idle state. (However, an ACK
from such a station may be processed immedi-
ately, as may incoming data that does not

request an ACK). There: is of course the
chance that we might delay processing of the
new data so long that a tirneout occurs. This
can be largely avoided, however, if the link
retransmission timers are chosen to be longer
than the time needed to send a typical multi-
packet “burst.” These can be limited by
appropriate window sizes in the end-to-end
(transport) protocol. The alternative, immedi-
ately acknowledging the new data but telling
the sender to hold off on more, is possible but
complicates the protocol. Periodic “probes”
from the other station would be needed to
guard against the deadlock that would occur if
our “go ahead” message is lost, and these
could also collide with packets to or from the
station we’re already communicating with. The
simple acknowledgement delay strategy thus
seems workable, especially if the data
retransmission strategy backs off rapidly (e.g.,
exponentially). It also simplifies the code
greatly, since managing multiple connection
state control blocks is usually the hardest part
of a “multi connect” TNC.

Since radio channels can vary widely in
quality, it is desirable to make the use of
ACK-ACKs and even ordinary ACKs optional.
This is especially useful when supporting
datagram-oriented network layer protocols such
as IP, since it is more elricient to dispense
entirely with the overhead of link level ACKs
and rely on end-to-end retransmission of lost
packets when link error rates are very low.
Our protocol therefore provides for an indica-
tion in each packet (data or ACK) whether a
reply (ACK or ACK-ACK) is expected for this
transmission. It is therefore easy to adapt this
protocol to changing radio conditions or user
reliability requirements. An ACK-ACK need
be sent only when no more data is available,
since the next data packet awaiting transmis-
sion may serve as an ACK-ACK. An ACK-
ACK may then be represented merely by an
empty data packet with the “acknowledgement
requested” bit turned off. This simplifies both
the concept and the implementation of the pro-
tocol considerably.

6.5. ACK-ACK Preliminary Specification

In specifying frame formats correspond-
ing to data, ACK and ACK-ACK messages, we
have tried to adhere to the basic structure of
the AX.25 datagram sublayer. In other words,
we keep the standard AX.25 address field lay-

q5.33

outs and attempt to use the existing control
flag definitions whenever possible. Data is
transmitted as a UI frame with poll and com-
mand turned on, ACK is transmitted as a UA
frame with final and response turned on, and
ACK-ACK is transmitted as an empty (no
data in the data field) UI frame with poll
turned off and command turned on.

6.5.1. Frame Formats

The frame format is similar to that of
AX.25. The fields are named and the length of
the field in bits follows the field name and is
enclosed in parenthesis. Here is the basic
frame:

F Dest Src Digi Ctl PID ID Data FCS F
(8) (56) (56) (O-448) (8) (8) (8) (16) (8)

Where

F Flag, length 8 bits. Value 7E hex, not
bit stuffed.

Dest Address of destination, length 56 bits.
This is the standard AX.25 address/SSID
combination.

Src Address of source, length 56 bits. This
is the standard AX.25 address/SSID
combination.

Digi Address of repeater(s), length varies
from 0 (no digipeaters) to 448 (8
digipeaters). This is carried over from
AX.25, although deprecated for the net-
works in which this protocol is likely to
be used.

Ctl Control field, length 8 bits. The con-
tent determines the frame type, either
UI or UA. The following values are in
binary:

UI 000p0011

U A OllpOOll
where ‘p’ is the poll/final bit.

PID Protocol identifier, length 8 bits. This
identifies the layer three protocol and
follows the same conventions as AX.25.

ID Frame ID, length 8 bits. This uniquely
identifies the frame from the previous
and subsequent frames to avoid duplicate
and lost frames.

Data Data, length 0 to 523,688 bits (0 to
65,461 bytes). The sender and receiver
should agree on a maximum frame
length not to exceed 65,461 bytes in

length.

FCS Frame check sequence, length 16 bits.
This contains the CRC-CCITT checksum
of the frame.

F Trailing flag.

The ID byte is probably best set from a
single counter used for all transmissions
regardless of destination. The only require-
ment placed on the sender is that the value of
the ID field not be duplicated in any two sub-
sequent frames sent to the same destination;
this can be avoided by limiting the transmit
queue to 255 entries.

6.5.2. Flow of Data Between Stations

This section is a preliminary specification
of the ACK-ACK protocol in an informal, nar-
rative style. As this definition is refined and
implemented, a more formal description is
being written. Contact the authors for more
information.

Data is transferred from station A to B in
the following way. Station A selects a ID
value, sends the data (UI) frame to B, and
starts a timer with interval rd. B notes the
sender address and ID number, responds with
an ACK (UA) containing the ID just
received, and starts a timer with interval To.
After receiving an ACK. from B for the most
recently sent frame, A responds by sending
the next data frame and restarting its timer if
there is more data to send, or sending an
ACK-ACK (empty data frame without poll
request) and stopping its timer if there is no
more data to send. When B receives the next
data frame or an ACK-ACK, B discards any ID
it is currently retaining from A and either
sends an ACK with the new ID (restarting its
timer) or goes into the idle state (stopping its
timer) as appropriate.

If A should fail to receive an ACK con-
taining the correct ID from B within the
timeout interval Td, then it increments a retry
counter, retransmits the: data frame and restarts
its timer. If the retry counter exceeds a fixed
limit, additional transmission attempts for this
frame are aborted, and if possible, the packet
should be returned to its original source with
an error indication. Higher level protocols are
then responsible for any further error recovery
procedures. If B fails to receive either another
data frame or an ACK-ACK from A within its
timeout period To, then it resends its ACK,

5.34

restarts its timer and increments a retry
counter. If the same data frame is received
again from A, B resets its retry counter,
resends an ACK and restarts its timer but oth-
erwise ignores it as a duplicate. If there is no
response at all from A after N ACK

T
retransmissions, where N is the ratio /I, B

T
abandons any further retransmission at teQmpts
and acts as thlough an ACK-ACK had been
received (i.e., it discards the ID and sender
information and returns to a quiescent state).
Higher level protocols are responsible for
detecting and recovering from the residual pos-
sibility for packet duplication this allows.

Because of its small amount of state, this
protocol can be implemented simply and with
little memory. Communicating with several
different stations in “rapid fire” sequence is
easy; the receiver need retain the last ID
valued received from a particular sender only
as long as data1 is actively being transferred.
Special connection establishment packets are
unnecessary.

7. Selection of Appropriate Values for Tun-
ing Parameters

There are three parameters that should
be regularly adjusted or “tuned” to the
existing conditions on the channel. These
parameters are frame size, transmit timeout
timer 7;1, and ACK timeout timer Tu. The
frame size should be adjusted to the
optimum value based on the current channel
statistics. As more frames are lost the frame
size should be shortened until the optimum
operating point is reached as described in
Appendix 1.

The correct timer values are much
simpler to calculate. The transmit timer should
be set to some value that is significantly
greater than the round-trip time for a frame to
travel from sender to receiver for an ACK to
return. The receiver should also calculate the
round-trip time and determine how many
ACKs are required to insure that an ACK
reaches the sender. The receiver should set the
value of To to be 7;1 divided by the number
of ACK transmissions N necessary to increase
the probability that an ACK arrives at the
sender to the desired level. In order for this
technique to work properly both the sender
and receiver need to agree on the formula

that relates round trip time to the: selected
value of 7;1. Both timers should be random-
ized and backed off as described earlier in the
congestion control section.

As soon as 7;, (equal to N’,‘,) expires at
the receiver the receiver should cease sending
ACKs. This prevent the ACKs from colliding
with and destroying a retransmitted data frame.
If the sender should fail to receive an ACK
it will resend the frame. The receiver repeats
the process of acknowledgement but discards
the frame.

7.1. Performance

ACK-ACK was compared to AX.25 for
various links and message sizes using a
Monte Carlo program that simulates both
ACK-ACK and AX.25 in identical environ-
ments. In all configurations a window size of 1
(stop and wait) was found ‘to be most efficient
and ACK-ACK to be more eficient than
LAPB/AX.25. Performance improvements
over LAPB/AX.25 ranged from a low of 1.21
for very reliable links to a situation involving
2 digipeaters where ACK-ACK delivered the
data and AX.25 failed to deliver all the data
within the running time of the simulation. In
the latter case, when the simulation was
terminated the perf’ormance improvement
over AX.25 was already over 100.

7.2. Conclusion

LAPB/AX.25 is a good protocol for
point-to-point communication over reliable
full-duplex links. ACK-ACK is more desirable
than AX.25 in high error rate and/or half-
duplex environments because it provides
significantly greater throughput, better chan-
nel utilization, and is much simpler to imple-
ment.

8. References

[II Fox, T., ed “AX.25 Amateur Radio
Link Layer Protocol Version 2”, Ameri-
can Radio Relay League, 1985.

[2] CCITT Study Group VII , “Interface
Between Data Terminal Equipment
(DTE) and Data Circuit-Terminating
Equipment (DCE) For Terminals Operat-
ing in the Packet Mode on Public Data
Networks,” Recommendation X.25,
1984.

5.3 5

[31

[61

[71

[81

[91

Kleinrock, L., and Tobagi, F., “Random
Access Techniques for Data Transmission
over Packet-Switched Radio Channels,”
National Computer Conference, 1975.
~~187-201.

Gower, N., and Jubin, J., “Congestion
Control Using Pacing in a Packet Radio
Network,” IEEE Conference on Military
Communications, 1982.

Metcalfe, R. M., and Boggs, D. R., “Eth-
ernet: Distributed Packet Switching for
Local Computer Networks,” Commun.
ACM, vol. 19, pp. 395-404, July 1976.

Postel, J., ed., “Transmission Control
Protocol Specification,” ARPA RFC 793,
September 1981.

US Department of Defense, “Military
Standard Transmission Control Proto-
col,” MIL-STD-1778, 12 August 1983.

Mills, D., “Internet Delay Experiments,”
ARPA RFC 889.

Brady, Paul T., “Performance Evaluation
of Multi-Reject and Selective Reject
Link-Level Protocol Enhancements,” Bell
Communications Research. (Paper sub-
mitted to ICC Toronto, June 1986).

[lo] Nagle , J . , “Congest ion Control in
IP/TCP Internetworks,” ARPA RFC
896

[l I] Binder, R., et al., “ALOHA Packet
Broadcasting - A Retrospect,” Proceed-
ings of the 1975 National Computer
Conference, page 208-209.

Appendix 1: Efficiency of a Go-Back-N Pro-
tocol

Two interrelated factors must be taken
into consideration when evaluating the
efficiency of a go-back-N sliding window proto-
col on a noisy channel: the effect of header
overhead (limiting efficiency even on an error-
free channel) and the effect of garbled frames.
This section derives the formulas for these two
factors that were used to arrive at the conclu-
sion that a window size of 1 (i.e., a stop-and-
wait protocol) maximizes channel efficiency
when operated on a half duplex channel. To
determine the net efficiency of the channel,
these two factors are evaluated with the desired
parameter values and then multiplied.

Header Overhead

If there are D data bits in a transmission,
H frame header bits, and N frames in a
transmission, then the ratio of data bits to total
bits sent is

L)- -
D+NH

If we include the overhead of an ACK (A bits)
then this becomes

D- -
D+NH+A

Unusable Frames
If the channel bit errors occur indepen-

dently at rate R, (i.e., caused by Gaussian
sources such as “white” thermal noise) then
the probability that a frame of length D+H is
received without errors is simply (1-R) n+rr.
In this section we call this quantity G, the pro-
bability of receiving a good frame. Note that
G decreases as we increase D; i.e., the longer
the frame, the greater the chance it will be cor-
rupted in transmission, unless the channel has
a perfect bit error rate (R=O).

In the go-back-N error recovery tech-
nique, only the next expected frame can be
processed; any other frames received are dis-
carded, even if they are received correctly (i.e.,
with a valid CRC).

Consider this example. Four frames
numbered 1, 2, 3 and 4 are sent in one
transmission. Frame 11 is received normally,
but frame number 2 is corrupted. Even if
frames 3 and 4 are received correctly, the
receiver will only acknowledge frame number
1. Frames 2, 3 and 4 will have to be resent,
even though only frame 2 was actually lost.

To analyze the performance of a sliding-
window protocol with go-back-N recovery, we
need to find the expected number of usable
(with correct CRC and in correct sequence)
frames in a transmission containing N frames.
We then divide this number by N, yielding the
normalized efficiency of the protocol (the
number of usable frames received divided by
the total number sent). G is defined as the
probability of any specific frame within the
transmission being received correctly, and we
assume that this value is the same for all
frames (i.e., the frames are all the same size
and errors are independent). Clearly, if we

5.36

were able to use every correctly received frame
(i.e., if we did not discard frames received
out-of-sequence due to the loss of an earlier
frame) then this efficiency would simply be G,
for any value of N. In the go-back-N case,
however, the a.nalysis is more complicated.

The probability that zero frames are
usable is (l-G), i.e., the probability that the
first frame is in error, rendering it and all late]
frames unusable. The probability that only one
frame is usable is G(l-G), the probability that
the first frame is received correctly and the
second one in error, and so on up to the proba-
bility that all N frames are usable. Summing
over all possi.bilities and weighting by the:
number of usable frames for each, we obtain

N-J
(1-G) c iGi + NGN

i=O

By factoring out G from the series and then
integrating and differentiating the finite sum,
we obtain

(1-G) G-$$“$ iG’-’ dG + NGN
i=O

Integrating,

Cl-G)G--&yGi + NGN
i=O

This now contains the sum of a finite
geometric series. Substituting with the closed
form of the sum, we obtain

(I-G:)G-$s + NGN

Differentiating,

(1-G) G
I
-I-GN-NG”-’
(1-G>2 1 - G

Simplifying,

I + NG”

Gl-G”
1-G

And normalizing by N, the number of frames
sent in each transmission, we finally obtain

1-G.’
GN(l-G)

A quick check shows that substituting N=l for
the single-frame case yields G, as expected.

5.37

